不确定预测模型的H∞滤波:使用LMI的增益计算和性能评估

Q3 Mathematics
Eli G. Pale Ramon, Oscar G. Ibarra-Manzano, José A. Andrade-Lucio, Yuriy S. Shmaliy
{"title":"不确定预测模型的H∞滤波:使用LMI的增益计算和性能评估","authors":"Eli G. Pale Ramon,&nbsp;Oscar G. Ibarra-Manzano,&nbsp;José A. Andrade-Lucio,&nbsp;Yuriy S. Shmaliy","doi":"10.1016/j.rico.2025.100581","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing the process informativity and the efficiency of control is achieved using state estimators, which need to be robust under harsh conditions. In this paper, we look at the robust state estimation problem of uncertain models using the transfer function approach through the bias correction gain <span><math><mi>K</mi></math></span> of a recursive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> filter. The filter is designed for processes represented in discrete time using the forward Euler method, which allows for predictive modeling. Since the error covariance of a state estimator is a quadratic function of <span><math><mi>K</mi></math></span>, a new theorem is proved and a numerical algorithm is developed for computing <span><math><mi>K</mi></math></span> using linear matrix inequality (LMI). An LMI-based algorithm for iterative <span><math><mi>K</mi></math></span> computation is also given. Numerical investigations are provided using two random models with uncertainties. Using the “Box” benchmark of visual object tracking, an experimental comparison of the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, Kalman, and robust unbiased finite impulse response (UFIR) filters is provided in terms of root mean square error, robustness factor, and estimation quality factor. It is shown that <span><math><mi>K</mi></math></span> of the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> filter is in the range between the Kalman gain and the UFIR filter gain.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"19 ","pages":"Article 100581"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H∞ filtering of uncertain predictive models: Gain computation using LMI and performance evaluation\",\"authors\":\"Eli G. Pale Ramon,&nbsp;Oscar G. Ibarra-Manzano,&nbsp;José A. Andrade-Lucio,&nbsp;Yuriy S. Shmaliy\",\"doi\":\"10.1016/j.rico.2025.100581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increasing the process informativity and the efficiency of control is achieved using state estimators, which need to be robust under harsh conditions. In this paper, we look at the robust state estimation problem of uncertain models using the transfer function approach through the bias correction gain <span><math><mi>K</mi></math></span> of a recursive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> filter. The filter is designed for processes represented in discrete time using the forward Euler method, which allows for predictive modeling. Since the error covariance of a state estimator is a quadratic function of <span><math><mi>K</mi></math></span>, a new theorem is proved and a numerical algorithm is developed for computing <span><math><mi>K</mi></math></span> using linear matrix inequality (LMI). An LMI-based algorithm for iterative <span><math><mi>K</mi></math></span> computation is also given. Numerical investigations are provided using two random models with uncertainties. Using the “Box” benchmark of visual object tracking, an experimental comparison of the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, Kalman, and robust unbiased finite impulse response (UFIR) filters is provided in terms of root mean square error, robustness factor, and estimation quality factor. It is shown that <span><math><mi>K</mi></math></span> of the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> filter is in the range between the Kalman gain and the UFIR filter gain.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"19 \",\"pages\":\"Article 100581\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

使用状态估计器来增加过程的信息性和控制效率,状态估计器需要在恶劣条件下具有鲁棒性。本文通过递推H∞滤波器的偏置校正增益K,研究了用传递函数方法求解不确定模型的鲁棒状态估计问题。该滤波器设计用于使用前向欧拉方法在离散时间内表示的过程,该方法允许进行预测建模。由于状态估计器的误差协方差是K的二次函数,利用线性矩阵不等式(LMI)证明了一个新的定理,并给出了计算K的数值算法。给出了一种基于lmi的迭代K计算算法。采用两种不确定随机模型进行了数值研究。利用视觉目标跟踪的“Box”基准,从均方根误差、鲁棒性因子和估计质量因子三个方面对H∞、卡尔曼和鲁棒无偏有限脉冲响应(UFIR)滤波器进行了实验比较。结果表明,H∞滤波器的K值介于卡尔曼增益和UFIR滤波器增益之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H∞ filtering of uncertain predictive models: Gain computation using LMI and performance evaluation
Increasing the process informativity and the efficiency of control is achieved using state estimators, which need to be robust under harsh conditions. In this paper, we look at the robust state estimation problem of uncertain models using the transfer function approach through the bias correction gain K of a recursive H filter. The filter is designed for processes represented in discrete time using the forward Euler method, which allows for predictive modeling. Since the error covariance of a state estimator is a quadratic function of K, a new theorem is proved and a numerical algorithm is developed for computing K using linear matrix inequality (LMI). An LMI-based algorithm for iterative K computation is also given. Numerical investigations are provided using two random models with uncertainties. Using the “Box” benchmark of visual object tracking, an experimental comparison of the H, Kalman, and robust unbiased finite impulse response (UFIR) filters is provided in terms of root mean square error, robustness factor, and estimation quality factor. It is shown that K of the H filter is in the range between the Kalman gain and the UFIR filter gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信