内质复合体的分类

IF 1.5 1区 数学 Q1 MATHEMATICS
Sam K. Miller
{"title":"内质复合体的分类","authors":"Sam K. Miller","doi":"10.1016/j.aim.2025.110404","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <em>k</em> a field of prime characteristic <em>p</em>. We give a complete classification of endotrivial complexes, i.e. determine the Picard group <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of the tensor-triangulated category <span><math><msup><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mmultiscripts><mrow><mi>triv</mi></mrow><mprescripts></mprescripts><mrow><mi>k</mi><mi>G</mi></mrow><none></none></mmultiscripts><mo>)</mo></math></span>, the bounded homotopy category of <em>p</em>-permutation modules, which Balmer and Gallauer recently considered in <span><span>[8]</span></span>. For <em>p</em>-groups, we identify <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mo>−</mo><mo>)</mo></math></span> with the rational <em>p</em>-biset functor <span><math><mi>C</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mo>−</mo><mo>)</mo></math></span> of Borel-Smith functions and recover a short exact sequence of rational <em>p</em>-biset functors constructed by Bouc and Yalçin. As a consequence, we prove that every <em>p</em>-permutation autoequivalence of a <em>p</em>-group arises from a splendid Rickard autoequivalence. Additionally, we give a positive answer to a question of Gelvin and Yalçin in <span><span>[22]</span></span>, showing the kernel of the Bouc homomorphism for an arbitrary finite group <em>G</em> is described by superclass functions <span><math><mi>f</mi><mo>:</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> satisfying the oriented Artin-Borel-Smith conditions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110404"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The classification of endotrivial complexes\",\"authors\":\"Sam K. Miller\",\"doi\":\"10.1016/j.aim.2025.110404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite group and <em>k</em> a field of prime characteristic <em>p</em>. We give a complete classification of endotrivial complexes, i.e. determine the Picard group <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of the tensor-triangulated category <span><math><msup><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mmultiscripts><mrow><mi>triv</mi></mrow><mprescripts></mprescripts><mrow><mi>k</mi><mi>G</mi></mrow><none></none></mmultiscripts><mo>)</mo></math></span>, the bounded homotopy category of <em>p</em>-permutation modules, which Balmer and Gallauer recently considered in <span><span>[8]</span></span>. For <em>p</em>-groups, we identify <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mo>−</mo><mo>)</mo></math></span> with the rational <em>p</em>-biset functor <span><math><mi>C</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mo>−</mo><mo>)</mo></math></span> of Borel-Smith functions and recover a short exact sequence of rational <em>p</em>-biset functors constructed by Bouc and Yalçin. As a consequence, we prove that every <em>p</em>-permutation autoequivalence of a <em>p</em>-group arises from a splendid Rickard autoequivalence. Additionally, we give a positive answer to a question of Gelvin and Yalçin in <span><span>[22]</span></span>, showing the kernel of the Bouc homomorphism for an arbitrary finite group <em>G</em> is described by superclass functions <span><math><mi>f</mi><mo>:</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>Z</mi></math></span> satisfying the oriented Artin-Borel-Smith conditions.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"478 \",\"pages\":\"Article 110404\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003020\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003020","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有限群,k是一个素数特征p的域。我们给出了内平凡复合体的一个完全分类,即确定了Balmer和Gallauer最近在[8]中提出的p置换模的有界同伦范畴——张量三角化范畴Kb(trivkG)的Picard群Ek(G)。对于p群,我们用Borel-Smith函数的有理p-二集函子CFb(−)来识别Ek(−),并恢复了由Bouc和yalin构造的有理p-二集函子的短精确序列。因此,我们证明了p群的每一个p置换自等价都是由一个绝妙的Rickard自等价产生的。另外,我们给出了[22]中的Gelvin和yalin问题的一个肯定的答案,证明了任意有限群G的Bouc同态核是由超类函数f:sp(G)→Z满足有向Artin-Borel-Smith条件所描述的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The classification of endotrivial complexes
Let G be a finite group and k a field of prime characteristic p. We give a complete classification of endotrivial complexes, i.e. determine the Picard group Ek(G) of the tensor-triangulated category Kb(trivkG), the bounded homotopy category of p-permutation modules, which Balmer and Gallauer recently considered in [8]. For p-groups, we identify Ek() with the rational p-biset functor CFb() of Borel-Smith functions and recover a short exact sequence of rational p-biset functors constructed by Bouc and Yalçin. As a consequence, we prove that every p-permutation autoequivalence of a p-group arises from a splendid Rickard autoequivalence. Additionally, we give a positive answer to a question of Gelvin and Yalçin in [22], showing the kernel of the Bouc homomorphism for an arbitrary finite group G is described by superclass functions f:sp(G)Z satisfying the oriented Artin-Borel-Smith conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信