Bruno Fonsêca Feitosa , Betina Louise Angioletti Decker , Edy Sousa de Brito , Marcella Camargo Marques , Sueli Rodrigues , Lilian Regina Barros Mariutti
{"title":"花青素稳定性理论。微胶囊化效果的证据总结","authors":"Bruno Fonsêca Feitosa , Betina Louise Angioletti Decker , Edy Sousa de Brito , Marcella Camargo Marques , Sueli Rodrigues , Lilian Regina Barros Mariutti","doi":"10.1016/j.fbp.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Anthocyanins have garnered significant attention due to their potential use as natural dyes. However, their chemical instability under various environmental conditions—such as pH fluctuations, temperature, light exposure, and interactions with other food components—limits their industrial applications. Microencapsulation has emerged as a promising strategy to enhance the stability of anthocyanins by providing protection against these degradation factors. This review examines the stability of fruit-derived anthocyanins, emphasizing structural modifications, color changes, and their interactions with pH, ascorbic acid, temperature, carbohydrates, proteins, copigmentation, and other factors. Additionally, the effects of microencapsulation on anthocyanin preservation are discussed, highlighting its applied evidence. Despite the advantages offered by microencapsulation, studies suggest that in certain applications, the stability achieved may not substantially surpass that of pure anthocyanins. Future research should investigate novel encapsulation approaches, including the use of polymer combinations and hybrid techniques, to optimize the protection of anthocyanins.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"153 ","pages":"Pages 77-86"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthocyanins stability theory – Evidence summary on the effects of microencapsulation\",\"authors\":\"Bruno Fonsêca Feitosa , Betina Louise Angioletti Decker , Edy Sousa de Brito , Marcella Camargo Marques , Sueli Rodrigues , Lilian Regina Barros Mariutti\",\"doi\":\"10.1016/j.fbp.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anthocyanins have garnered significant attention due to their potential use as natural dyes. However, their chemical instability under various environmental conditions—such as pH fluctuations, temperature, light exposure, and interactions with other food components—limits their industrial applications. Microencapsulation has emerged as a promising strategy to enhance the stability of anthocyanins by providing protection against these degradation factors. This review examines the stability of fruit-derived anthocyanins, emphasizing structural modifications, color changes, and their interactions with pH, ascorbic acid, temperature, carbohydrates, proteins, copigmentation, and other factors. Additionally, the effects of microencapsulation on anthocyanin preservation are discussed, highlighting its applied evidence. Despite the advantages offered by microencapsulation, studies suggest that in certain applications, the stability achieved may not substantially surpass that of pure anthocyanins. Future research should investigate novel encapsulation approaches, including the use of polymer combinations and hybrid techniques, to optimize the protection of anthocyanins.</div></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":\"153 \",\"pages\":\"Pages 77-86\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308525001142\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308525001142","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Anthocyanins stability theory – Evidence summary on the effects of microencapsulation
Anthocyanins have garnered significant attention due to their potential use as natural dyes. However, their chemical instability under various environmental conditions—such as pH fluctuations, temperature, light exposure, and interactions with other food components—limits their industrial applications. Microencapsulation has emerged as a promising strategy to enhance the stability of anthocyanins by providing protection against these degradation factors. This review examines the stability of fruit-derived anthocyanins, emphasizing structural modifications, color changes, and their interactions with pH, ascorbic acid, temperature, carbohydrates, proteins, copigmentation, and other factors. Additionally, the effects of microencapsulation on anthocyanin preservation are discussed, highlighting its applied evidence. Despite the advantages offered by microencapsulation, studies suggest that in certain applications, the stability achieved may not substantially surpass that of pure anthocyanins. Future research should investigate novel encapsulation approaches, including the use of polymer combinations and hybrid techniques, to optimize the protection of anthocyanins.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.