赫姆霍兹方程的任意阶虚元法在港口波场计算中的应用

IF 1.4 Q2 MATHEMATICS, APPLIED
Ronan Dupont
{"title":"赫姆霍兹方程的任意阶虚元法在港口波场计算中的应用","authors":"Ronan Dupont","doi":"10.1016/j.rinam.2025.100598","DOIUrl":null,"url":null,"abstract":"<div><div>The Virtual Element Method (VEM), as a high-order polytopal method, offers significant advantages over traditional Finite Element Methods (FEM). In particular, it allows the handling of polytopal or non-conforming meshes which greatly simplificates the mesh generation procedure. In this paper, the VEM is used for the discretization of the Helmholtz equations with a Robin-type absorbing boundary condition. This problem is crucial in various fields, including coastal engineering, oceanography and the design of offshore structures. Details of the VEM implementation with Robin boundary condition are given. Numerical results on test cases with analytical solutions show that the methods can provide optimal convergence rates for smooth solutions. Then, as a more realistic test case, the computation of the eigenmodes of the port of Cherbourg is carried out.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100598"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An arbitrary-order Virtual Element Method for the Helmholtz equation applied to wave field calculation in port\",\"authors\":\"Ronan Dupont\",\"doi\":\"10.1016/j.rinam.2025.100598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Virtual Element Method (VEM), as a high-order polytopal method, offers significant advantages over traditional Finite Element Methods (FEM). In particular, it allows the handling of polytopal or non-conforming meshes which greatly simplificates the mesh generation procedure. In this paper, the VEM is used for the discretization of the Helmholtz equations with a Robin-type absorbing boundary condition. This problem is crucial in various fields, including coastal engineering, oceanography and the design of offshore structures. Details of the VEM implementation with Robin boundary condition are given. Numerical results on test cases with analytical solutions show that the methods can provide optimal convergence rates for smooth solutions. Then, as a more realistic test case, the computation of the eigenmodes of the port of Cherbourg is carried out.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100598\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

虚拟元法(VEM)作为一种高阶多面体方法,具有传统有限元法(FEM)无法比拟的优势。特别是,它允许处理多边形或不一致的网格,大大简化了网格生成过程。本文将向量机用于具有robin型吸收边界条件的亥姆霍兹方程的离散化。这个问题在许多领域都是至关重要的,包括海岸工程、海洋学和近海结构物的设计。给出了基于Robin边界条件的VEM的具体实现方法。具有解析解的测试用例的数值结果表明,该方法能够提供最优的光滑解收敛速率。然后,作为一个更实际的试验案例,对瑟堡港的本征模态进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An arbitrary-order Virtual Element Method for the Helmholtz equation applied to wave field calculation in port
The Virtual Element Method (VEM), as a high-order polytopal method, offers significant advantages over traditional Finite Element Methods (FEM). In particular, it allows the handling of polytopal or non-conforming meshes which greatly simplificates the mesh generation procedure. In this paper, the VEM is used for the discretization of the Helmholtz equations with a Robin-type absorbing boundary condition. This problem is crucial in various fields, including coastal engineering, oceanography and the design of offshore structures. Details of the VEM implementation with Robin boundary condition are given. Numerical results on test cases with analytical solutions show that the methods can provide optimal convergence rates for smooth solutions. Then, as a more realistic test case, the computation of the eigenmodes of the port of Cherbourg is carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信