{"title":"耦合压电弹性翼型振荡器:非线性振荡","authors":"Nishant Nemani , Sergio Preidikman , Balakumar Balachandran","doi":"10.1016/j.jsv.2025.119226","DOIUrl":null,"url":null,"abstract":"<div><div>Limit-cycle oscillations of bodies with airfoil cross-sections is a subject of keen interest for engineering applications. In systems consisting of multiple such closely spaced bodies, the aerodynamic interactions amongst two or more such bodies can influence the system response. The nature of these interactions is examined with respect to variations in external parameters such as freestream speed and system parameters such as inter-oscillator spacing and the number of airfoil oscillators. By using a co-simulation scheme, which consists of a reduced order three degree-of-freedom piezostructural system and an unsteady vortex lattice method fluid solver, the effects of these parameters on the resulting aerodynamic loads on the system, the overall dynamic response, and the critical flutter speed are studied. In a three-airfoil oscillator system, the effect of the position of the inner airfoil oscillator is extensively studied with a focus on characterizing airfoil interactions and airfoil-wake interactions. For different parallel configurations, studies of bifurcations with respect to different control parameters are conducted.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"618 ","pages":"Article 119226"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled piezoelastic airfoil oscillators: Nonlinear oscillations\",\"authors\":\"Nishant Nemani , Sergio Preidikman , Balakumar Balachandran\",\"doi\":\"10.1016/j.jsv.2025.119226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Limit-cycle oscillations of bodies with airfoil cross-sections is a subject of keen interest for engineering applications. In systems consisting of multiple such closely spaced bodies, the aerodynamic interactions amongst two or more such bodies can influence the system response. The nature of these interactions is examined with respect to variations in external parameters such as freestream speed and system parameters such as inter-oscillator spacing and the number of airfoil oscillators. By using a co-simulation scheme, which consists of a reduced order three degree-of-freedom piezostructural system and an unsteady vortex lattice method fluid solver, the effects of these parameters on the resulting aerodynamic loads on the system, the overall dynamic response, and the critical flutter speed are studied. In a three-airfoil oscillator system, the effect of the position of the inner airfoil oscillator is extensively studied with a focus on characterizing airfoil interactions and airfoil-wake interactions. For different parallel configurations, studies of bifurcations with respect to different control parameters are conducted.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"618 \",\"pages\":\"Article 119226\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25003001\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25003001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Limit-cycle oscillations of bodies with airfoil cross-sections is a subject of keen interest for engineering applications. In systems consisting of multiple such closely spaced bodies, the aerodynamic interactions amongst two or more such bodies can influence the system response. The nature of these interactions is examined with respect to variations in external parameters such as freestream speed and system parameters such as inter-oscillator spacing and the number of airfoil oscillators. By using a co-simulation scheme, which consists of a reduced order three degree-of-freedom piezostructural system and an unsteady vortex lattice method fluid solver, the effects of these parameters on the resulting aerodynamic loads on the system, the overall dynamic response, and the critical flutter speed are studied. In a three-airfoil oscillator system, the effect of the position of the inner airfoil oscillator is extensively studied with a focus on characterizing airfoil interactions and airfoil-wake interactions. For different parallel configurations, studies of bifurcations with respect to different control parameters are conducted.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.