MINGLE:用于单细胞染色质可及性数据中自动细胞类型注释的基于相互信息的可解释框架

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Siyu Li, Yifan Huang, Shengquan Chen
{"title":"MINGLE:用于单细胞染色质可及性数据中自动细胞类型注释的基于相互信息的可解释框架","authors":"Siyu Li, Yifan Huang, Shengquan Chen","doi":"10.1186/s13059-025-03603-9","DOIUrl":null,"url":null,"abstract":"Single-cell chromatin accessibility sequencing (scCAS) has proven invaluable for investigating the intricate landscape of epigenomic heterogeneity. We propose MINGLE, a mutual information-based interpretable framework that leverages cellular similarities and topological structures for accurate cell type annotation of scCAS data. Additionally, we introduce a convex hull-based strategy to effectively identify novel cell types. Extensive experiments demonstrate MINGLE’s superior annotation performance, particularly for rare and novel cell types, delivering valuable biological insights compared to existing methods. Moreover, MINGLE excels in cross-batch, cross-tissue, and cross-species scenarios, showing robustness to data imbalance and size, highlighting its versatility for complex annotation tasks.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"70 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MINGLE: a mutual information-based interpretable framework for automatic cell type annotation in single-cell chromatin accessibility data\",\"authors\":\"Siyu Li, Yifan Huang, Shengquan Chen\",\"doi\":\"10.1186/s13059-025-03603-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell chromatin accessibility sequencing (scCAS) has proven invaluable for investigating the intricate landscape of epigenomic heterogeneity. We propose MINGLE, a mutual information-based interpretable framework that leverages cellular similarities and topological structures for accurate cell type annotation of scCAS data. Additionally, we introduce a convex hull-based strategy to effectively identify novel cell types. Extensive experiments demonstrate MINGLE’s superior annotation performance, particularly for rare and novel cell types, delivering valuable biological insights compared to existing methods. Moreover, MINGLE excels in cross-batch, cross-tissue, and cross-species scenarios, showing robustness to data imbalance and size, highlighting its versatility for complex annotation tasks.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03603-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03603-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞染色质可及性测序(scCAS)已被证明是研究表观基因组异质性复杂景观的宝贵工具。我们提出了MINGLE,这是一个基于相互信息的可解释框架,利用细胞相似性和拓扑结构对scCAS数据进行准确的细胞类型注释。此外,我们引入了一种基于凸壳的策略来有效地识别新的细胞类型。大量的实验证明了MINGLE优越的注释性能,特别是对于罕见和新颖的细胞类型,与现有方法相比,提供了有价值的生物学见解。此外,MINGLE在跨批、跨组织和跨物种场景中表现出色,显示出对数据不平衡和大小的鲁棒性,突出了它在复杂注释任务中的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MINGLE: a mutual information-based interpretable framework for automatic cell type annotation in single-cell chromatin accessibility data
Single-cell chromatin accessibility sequencing (scCAS) has proven invaluable for investigating the intricate landscape of epigenomic heterogeneity. We propose MINGLE, a mutual information-based interpretable framework that leverages cellular similarities and topological structures for accurate cell type annotation of scCAS data. Additionally, we introduce a convex hull-based strategy to effectively identify novel cell types. Extensive experiments demonstrate MINGLE’s superior annotation performance, particularly for rare and novel cell types, delivering valuable biological insights compared to existing methods. Moreover, MINGLE excels in cross-batch, cross-tissue, and cross-species scenarios, showing robustness to data imbalance and size, highlighting its versatility for complex annotation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信