一种分散的熵正则化actor - critical算法及其有限时间分析

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tao Mao;Junlong Zhu;Mingchuan Zhang;Quanbo Ge;Ruijuan Zheng;Qingtao Wu
{"title":"一种分散的熵正则化actor - critical算法及其有限时间分析","authors":"Tao Mao;Junlong Zhu;Mingchuan Zhang;Quanbo Ge;Ruijuan Zheng;Qingtao Wu","doi":"10.1109/TNNLS.2025.3573801","DOIUrl":null,"url":null,"abstract":"Decentralized actor-critic (AC) is one of the most dominant algorithms for dealing with multiagent reinforcement learning (MARL) problems. However, <italic>exploration-efficient</i>, <italic>sample-efficient</i>, and <italic>communication-efficient</i> are difficult to achieve simultaneously by existing decentralized AC methods. For this reason, this article develops a decentralized multiagent AC algorithm by incorporating entropy regularization to improve exploration with theoretical guarantees, referred to as multi-agent AC algorithm with entropy regularization (MACE). Moreover, we rigorously prove that MACE can achieve sample complexity <inline-formula> <tex-math>$\\mathcal {O}(\\epsilon ^{-2}\\ln \\epsilon ^{-1})$ </tex-math></inline-formula> and communication complexity of <inline-formula> <tex-math>$\\mathcal {O}(\\epsilon ^{-1}\\ln \\epsilon ^{-1})$ </tex-math></inline-formula>, which match the best complexities at present. Finally, the performance of MACE is also evaluated on reinforcement learning (RL) tasks. The experimental results show that the proposed algorithm achieves better exploration efficiency than state-of-the-art decentralized AC-type algorithms.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 10","pages":"19423-19436"},"PeriodicalIF":8.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decentralized Actor–Critic Algorithm With Entropy Regularization and Its Finite-Time Analysis\",\"authors\":\"Tao Mao;Junlong Zhu;Mingchuan Zhang;Quanbo Ge;Ruijuan Zheng;Qingtao Wu\",\"doi\":\"10.1109/TNNLS.2025.3573801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decentralized actor-critic (AC) is one of the most dominant algorithms for dealing with multiagent reinforcement learning (MARL) problems. However, <italic>exploration-efficient</i>, <italic>sample-efficient</i>, and <italic>communication-efficient</i> are difficult to achieve simultaneously by existing decentralized AC methods. For this reason, this article develops a decentralized multiagent AC algorithm by incorporating entropy regularization to improve exploration with theoretical guarantees, referred to as multi-agent AC algorithm with entropy regularization (MACE). Moreover, we rigorously prove that MACE can achieve sample complexity <inline-formula> <tex-math>$\\\\mathcal {O}(\\\\epsilon ^{-2}\\\\ln \\\\epsilon ^{-1})$ </tex-math></inline-formula> and communication complexity of <inline-formula> <tex-math>$\\\\mathcal {O}(\\\\epsilon ^{-1}\\\\ln \\\\epsilon ^{-1})$ </tex-math></inline-formula>, which match the best complexities at present. Finally, the performance of MACE is also evaluated on reinforcement learning (RL) tasks. The experimental results show that the proposed algorithm achieves better exploration efficiency than state-of-the-art decentralized AC-type algorithms.\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"36 10\",\"pages\":\"19423-19436\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11029594/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11029594/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

分散式行为者批判(AC)算法是处理多智能体强化学习(MARL)问题的主流算法之一。然而,现有的分散交流方法难以同时实现高效的勘探、高效的采样和高效的通信。因此,本文开发了一种分散的多智能体AC算法,通过结合熵正则化来改进具有理论保证的探索,称为熵正则化多智能体AC算法(MACE)。此外,我们严格证明了MACE可以达到与目前最佳复杂度匹配的样本复杂度$\mathcal {O}(\epsilon ^{-2}\ln \epsilon ^{-1})$和通信复杂度$\mathcal {O}(\epsilon ^{-1}\ln \epsilon ^{-1})$。最后,对MACE在强化学习(RL)任务中的表现进行了评价。实验结果表明,该算法比现有的分散ac型算法具有更好的搜索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decentralized Actor–Critic Algorithm With Entropy Regularization and Its Finite-Time Analysis
Decentralized actor-critic (AC) is one of the most dominant algorithms for dealing with multiagent reinforcement learning (MARL) problems. However, exploration-efficient, sample-efficient, and communication-efficient are difficult to achieve simultaneously by existing decentralized AC methods. For this reason, this article develops a decentralized multiagent AC algorithm by incorporating entropy regularization to improve exploration with theoretical guarantees, referred to as multi-agent AC algorithm with entropy regularization (MACE). Moreover, we rigorously prove that MACE can achieve sample complexity $\mathcal {O}(\epsilon ^{-2}\ln \epsilon ^{-1})$ and communication complexity of $\mathcal {O}(\epsilon ^{-1}\ln \epsilon ^{-1})$ , which match the best complexities at present. Finally, the performance of MACE is also evaluated on reinforcement learning (RL) tasks. The experimental results show that the proposed algorithm achieves better exploration efficiency than state-of-the-art decentralized AC-type algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信