用粒子MCMC估计随机SIHR模型中Black-Karasinski过程的动态传输速率。

ArXiv Pub Date : 2025-05-30
Avery Drennan, Jeffrey Covington, Dan Han, Andrew Attilio, Jaechoul Lee, Richard Posner, Eck Doerry, Joseph Mihaljevic, Ye Chen
{"title":"用粒子MCMC估计随机SIHR模型中Black-Karasinski过程的动态传输速率。","authors":"Avery Drennan, Jeffrey Covington, Dan Han, Andrew Attilio, Jaechoul Lee, Richard Posner, Eck Doerry, Joseph Mihaljevic, Ye Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Compartmental models are effective in modeling the spread of infectious pathogens, but have remaining weaknesses in fitting to real datasets exhibiting stochastic effects. We propose a stochastic SIHR model with a dynamic transmission rate, where the rate is modeled by the Black-Karasinski (BK) process - a mean-reverting stochastic process with a stable equilibrium distribution, making it well-suited for modeling long-term epidemic dynamics. To generate sample paths of the BK process and estimate static parameters of the system, we employ particle Markov Chain Monte Carlo (pMCMC) methods due to their effectiveness in handling complex state-space models and jointly estimating parameters. We designed experiments on synthetic data to assess estimation accuracy and its impact on inferred transmission rates; all BK-process parameters were estimated accurately except the mean-reverting rate. We also assess the sensitivity of pMCMC to misspecification of the mean-reversion rate. Our results show that estimation accuracy remains stable across different mean-reversion rates, though smaller values increase error variance and complicate inference results. Finally, we apply our model to Arizona flu hospitalization data, finding that parameter estimates are consistent with published survey data.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating dynamic transmission rates with a Black-Karasinski process in stochastic SIHR models using particle MCMC.\",\"authors\":\"Avery Drennan, Jeffrey Covington, Dan Han, Andrew Attilio, Jaechoul Lee, Richard Posner, Eck Doerry, Joseph Mihaljevic, Ye Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compartmental models are effective in modeling the spread of infectious pathogens, but have remaining weaknesses in fitting to real datasets exhibiting stochastic effects. We propose a stochastic SIHR model with a dynamic transmission rate, where the rate is modeled by the Black-Karasinski (BK) process - a mean-reverting stochastic process with a stable equilibrium distribution, making it well-suited for modeling long-term epidemic dynamics. To generate sample paths of the BK process and estimate static parameters of the system, we employ particle Markov Chain Monte Carlo (pMCMC) methods due to their effectiveness in handling complex state-space models and jointly estimating parameters. We designed experiments on synthetic data to assess estimation accuracy and its impact on inferred transmission rates; all BK-process parameters were estimated accurately except the mean-reverting rate. We also assess the sensitivity of pMCMC to misspecification of the mean-reversion rate. Our results show that estimation accuracy remains stable across different mean-reversion rates, though smaller values increase error variance and complicate inference results. Finally, we apply our model to Arizona flu hospitalization data, finding that parameter estimates are consistent with published survey data.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

区隔模型在模拟感染性病原体的传播方面是有效的,但在拟合显示随机效应的真实数据集方面仍然存在弱点。我们提出了一个具有动态传播率的随机SIHR模型,其中传播率由Black-Karasinski (BK)过程建模,这是一个具有稳定平衡分布的均值回归随机过程,使其非常适合建模长期流行病动力学。为了生成BK过程的样本路径和估计系统的静态参数,我们采用粒子马尔可夫链蒙特卡罗(pMCMC)方法,因为它在处理复杂的状态空间模型和联合估计参数方面是有效的。我们设计了合成数据实验来评估估计精度及其对推断传输率的影响;除平均恢复速率外,所有bk工艺参数均能准确估计。我们还评估了pMCMC对平均回归率错配的敏感性。我们的研究结果表明,在不同的均值回归率下,估计精度保持稳定,尽管较小的值会增加误差方差并使推理结果复杂化。最后,我们将我们的模型应用于亚利桑那州流感住院数据,发现参数估计与公布的调查数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating dynamic transmission rates with a Black-Karasinski process in stochastic SIHR models using particle MCMC.

Compartmental models are effective in modeling the spread of infectious pathogens, but have remaining weaknesses in fitting to real datasets exhibiting stochastic effects. We propose a stochastic SIHR model with a dynamic transmission rate, where the rate is modeled by the Black-Karasinski (BK) process - a mean-reverting stochastic process with a stable equilibrium distribution, making it well-suited for modeling long-term epidemic dynamics. To generate sample paths of the BK process and estimate static parameters of the system, we employ particle Markov Chain Monte Carlo (pMCMC) methods due to their effectiveness in handling complex state-space models and jointly estimating parameters. We designed experiments on synthetic data to assess estimation accuracy and its impact on inferred transmission rates; all BK-process parameters were estimated accurately except the mean-reverting rate. We also assess the sensitivity of pMCMC to misspecification of the mean-reversion rate. Our results show that estimation accuracy remains stable across different mean-reversion rates, though smaller values increase error variance and complicate inference results. Finally, we apply our model to Arizona flu hospitalization data, finding that parameter estimates are consistent with published survey data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信