在酵母菌落发育过程中会发生短暂的突变爆发。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicolas Agier, Nina Vittorelli, Louis Ollivier, Frédéric Chaux, Alexandre Gillet-Markowska, Samuel O'Donnell, Fanny Pouyet, Gilles Fischer, Stéphane Delmas
{"title":"在酵母菌落发育过程中会发生短暂的突变爆发。","authors":"Nicolas Agier, Nina Vittorelli, Louis Ollivier, Frédéric Chaux, Alexandre Gillet-Markowska, Samuel O'Donnell, Fanny Pouyet, Gilles Fischer, Stéphane Delmas","doi":"10.1038/s44320-025-00117-1","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing the contribution of mutators to mutation accumulation is essential for understanding cellular adaptation and diseases like cancer. By measuring single and double mutation rates, including point mutations, segmental duplications, and reciprocal translocations, we found that wild-type yeast colonies exhibit double mutation rates up to 17 times higher than expected from experimentally determined single mutation rates. These double mutants retained wild-type mutation rates, indicating they originated from genetically normal cells that transiently expressed a mutator phenotype. Numerical simulations suggest that transient mutator subpopulations likely consist of less than a few thousand cells, and experience high-intensity mutational bursts for less than five generations. Most double mutations accumulated sequentially across cell cycles, with simultaneous acquisition being rare and likely linked to systemic genomic instability. Additionally, we explored the genetic control of transient hypermutation and found that the excess of double mutants can be modulated by replication stress and the DNA damage tolerance pathway. Our findings suggest that transient mutators play a significant role in genomic instability and contribute to the mutational load accumulating in growing isogenic populations.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transient mutational burst occurs during yeast colony development.\",\"authors\":\"Nicolas Agier, Nina Vittorelli, Louis Ollivier, Frédéric Chaux, Alexandre Gillet-Markowska, Samuel O'Donnell, Fanny Pouyet, Gilles Fischer, Stéphane Delmas\",\"doi\":\"10.1038/s44320-025-00117-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Characterizing the contribution of mutators to mutation accumulation is essential for understanding cellular adaptation and diseases like cancer. By measuring single and double mutation rates, including point mutations, segmental duplications, and reciprocal translocations, we found that wild-type yeast colonies exhibit double mutation rates up to 17 times higher than expected from experimentally determined single mutation rates. These double mutants retained wild-type mutation rates, indicating they originated from genetically normal cells that transiently expressed a mutator phenotype. Numerical simulations suggest that transient mutator subpopulations likely consist of less than a few thousand cells, and experience high-intensity mutational bursts for less than five generations. Most double mutations accumulated sequentially across cell cycles, with simultaneous acquisition being rare and likely linked to systemic genomic instability. Additionally, we explored the genetic control of transient hypermutation and found that the excess of double mutants can be modulated by replication stress and the DNA damage tolerance pathway. Our findings suggest that transient mutators play a significant role in genomic instability and contribute to the mutational load accumulating in growing isogenic populations.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00117-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00117-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

描述突变对突变积累的贡献对于理解细胞适应和癌症等疾病至关重要。通过测量单突变率和双突变率,包括点突变、片段复制和互惠易位,我们发现野生型酵母菌落的双突变率比实验确定的单突变率高17倍。这些双突变体保持了野生型突变率,表明它们起源于瞬时表达突变表型的基因正常细胞。数值模拟表明,瞬时突变亚群可能由不到几千个细胞组成,并且经历不到五代的高强度突变爆发。大多数双突变在细胞周期中顺序积累,同时获得的情况很少见,可能与系统基因组不稳定有关。此外,我们探索了瞬时超突变的遗传控制,发现复制胁迫和DNA损伤耐受途径可以调节双突变体的过量。我们的研究结果表明,瞬时突变在基因组不稳定性中起着重要作用,并有助于在不断增长的等基因群体中积累突变负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transient mutational burst occurs during yeast colony development.

Characterizing the contribution of mutators to mutation accumulation is essential for understanding cellular adaptation and diseases like cancer. By measuring single and double mutation rates, including point mutations, segmental duplications, and reciprocal translocations, we found that wild-type yeast colonies exhibit double mutation rates up to 17 times higher than expected from experimentally determined single mutation rates. These double mutants retained wild-type mutation rates, indicating they originated from genetically normal cells that transiently expressed a mutator phenotype. Numerical simulations suggest that transient mutator subpopulations likely consist of less than a few thousand cells, and experience high-intensity mutational bursts for less than five generations. Most double mutations accumulated sequentially across cell cycles, with simultaneous acquisition being rare and likely linked to systemic genomic instability. Additionally, we explored the genetic control of transient hypermutation and found that the excess of double mutants can be modulated by replication stress and the DNA damage tolerance pathway. Our findings suggest that transient mutators play a significant role in genomic instability and contribute to the mutational load accumulating in growing isogenic populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信