揭示显性注意力不集中多动症(ADHD- pi):来自甲状腺激素反应蛋白(THRSP)过表达小鼠纹状体蛋白质组学分析的见解。

IF 4.3 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-10-01 Epub Date: 2025-06-10 DOI:10.1007/s12035-025-05031-z
Raly James Perez Custodio, Leandro Val Sayson, Ara Cho, Hyeryeon Jung, Darlene Mae Ortiz, Hyun Jun Lee, Emad Alyan, Edmund Wascher, Stephan Getzmann, Mikyung Kim, Kyeong-Man Kim, Eugene C Yi, Hee Jin Kim, Jae Hoon Cheong
{"title":"揭示显性注意力不集中多动症(ADHD- pi):来自甲状腺激素反应蛋白(THRSP)过表达小鼠纹状体蛋白质组学分析的见解。","authors":"Raly James Perez Custodio, Leandro Val Sayson, Ara Cho, Hyeryeon Jung, Darlene Mae Ortiz, Hyun Jun Lee, Emad Alyan, Edmund Wascher, Stephan Getzmann, Mikyung Kim, Kyeong-Man Kim, Eugene C Yi, Hee Jin Kim, Jae Hoon Cheong","doi":"10.1007/s12035-025-05031-z","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder, or ADHD, is a neurodevelopmental disorder with poorly understood molecular mechanisms. Recent studies have proposed that gene expression involved in regulating synaptic transmission in the striatum may play a role in ADHD pathogenesis. To explore the molecular basis of ADHD, we utilized proteomic analysis using whole striatal tissues from early adult thyroid hormone-responsive protein-overexpressing (THRSP-OE) mice, which displayed defining characteristics of predominantly inattentive ADHD (ADHD-PI). We focused on the striatal brain region due to its critical role in the regulation of attention, motivation, and reward processing. Moreover, the striatum modulates dopaminergic pathways that are known to be impaired in ADHD. Our analysis revealed an innate overexpression of Snap25 protein in THRSP-OE mice, indicating possible alterations in the SNARE protein complex and potential neurotransmitter dysregulation. Furthermore, a binding affinity study showed reduced dopamine D1 receptor binding concentrations and pronounced low dopamine levels in THRSP-OE mice. Repeated seven-day injections of methylphenidate improved the low dopamine levels, reducing the EEG theta/beta ratio in this animal model. These findings suggest new markers specific to the ADHD-PI presentation and further support the role of Snap25 dysregulation and possible SNARE protein complex alterations in ADHD-PI.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"13225-13249"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling Predominantly Inattentive ADHD (ADHD-PI): Insights from Proteomic Analysis of the Striatum of Thyroid Hormone-Responsive Protein (THRSP)-Overexpressing Mice.\",\"authors\":\"Raly James Perez Custodio, Leandro Val Sayson, Ara Cho, Hyeryeon Jung, Darlene Mae Ortiz, Hyun Jun Lee, Emad Alyan, Edmund Wascher, Stephan Getzmann, Mikyung Kim, Kyeong-Man Kim, Eugene C Yi, Hee Jin Kim, Jae Hoon Cheong\",\"doi\":\"10.1007/s12035-025-05031-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit/hyperactivity disorder, or ADHD, is a neurodevelopmental disorder with poorly understood molecular mechanisms. Recent studies have proposed that gene expression involved in regulating synaptic transmission in the striatum may play a role in ADHD pathogenesis. To explore the molecular basis of ADHD, we utilized proteomic analysis using whole striatal tissues from early adult thyroid hormone-responsive protein-overexpressing (THRSP-OE) mice, which displayed defining characteristics of predominantly inattentive ADHD (ADHD-PI). We focused on the striatal brain region due to its critical role in the regulation of attention, motivation, and reward processing. Moreover, the striatum modulates dopaminergic pathways that are known to be impaired in ADHD. Our analysis revealed an innate overexpression of Snap25 protein in THRSP-OE mice, indicating possible alterations in the SNARE protein complex and potential neurotransmitter dysregulation. Furthermore, a binding affinity study showed reduced dopamine D1 receptor binding concentrations and pronounced low dopamine levels in THRSP-OE mice. Repeated seven-day injections of methylphenidate improved the low dopamine levels, reducing the EEG theta/beta ratio in this animal model. These findings suggest new markers specific to the ADHD-PI presentation and further support the role of Snap25 dysregulation and possible SNARE protein complex alterations in ADHD-PI.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"13225-13249\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-05031-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05031-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

注意缺陷/多动障碍(ADHD)是一种神经发育障碍,其分子机制尚不清楚。近年来的研究表明,纹状体中参与调节突触传递的基因表达可能在ADHD发病机制中起作用。为了探索ADHD的分子基础,我们对早期成年甲状腺激素反应性蛋白过表达(THRSP-OE)小鼠的整个纹状体组织进行了蛋白质组学分析,这些小鼠显示出主要不注意性ADHD (ADHD- pi)的定义特征。我们关注纹状体大脑区域,因为它在注意力、动机和奖励处理的调节中起着关键作用。此外,纹状体调节多巴胺能通路,这是已知的ADHD受损。我们的分析显示,在THRSP-OE小鼠中存在先天的Snap25蛋白过表达,这表明SNARE蛋白复合物可能发生改变和潜在的神经递质失调。此外,结合亲和力研究显示,THRSP-OE小鼠多巴胺D1受体结合浓度降低,多巴胺水平明显降低。在该动物模型中,连续7天注射哌甲酯改善了低多巴胺水平,降低了脑电图θ / β比值。这些发现提示了ADHD-PI表现特异性的新标记,并进一步支持了Snap25失调和SNARE蛋白复合物可能在ADHD-PI中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Predominantly Inattentive ADHD (ADHD-PI): Insights from Proteomic Analysis of the Striatum of Thyroid Hormone-Responsive Protein (THRSP)-Overexpressing Mice.

Attention-deficit/hyperactivity disorder, or ADHD, is a neurodevelopmental disorder with poorly understood molecular mechanisms. Recent studies have proposed that gene expression involved in regulating synaptic transmission in the striatum may play a role in ADHD pathogenesis. To explore the molecular basis of ADHD, we utilized proteomic analysis using whole striatal tissues from early adult thyroid hormone-responsive protein-overexpressing (THRSP-OE) mice, which displayed defining characteristics of predominantly inattentive ADHD (ADHD-PI). We focused on the striatal brain region due to its critical role in the regulation of attention, motivation, and reward processing. Moreover, the striatum modulates dopaminergic pathways that are known to be impaired in ADHD. Our analysis revealed an innate overexpression of Snap25 protein in THRSP-OE mice, indicating possible alterations in the SNARE protein complex and potential neurotransmitter dysregulation. Furthermore, a binding affinity study showed reduced dopamine D1 receptor binding concentrations and pronounced low dopamine levels in THRSP-OE mice. Repeated seven-day injections of methylphenidate improved the low dopamine levels, reducing the EEG theta/beta ratio in this animal model. These findings suggest new markers specific to the ADHD-PI presentation and further support the role of Snap25 dysregulation and possible SNARE protein complex alterations in ADHD-PI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信