Orane Lerouley, Isabelle Larrieu, Tom Louis Ducrocq, Benoît Pinson, Marie-France Giraud, Arnaud Mourier
{"title":"在酿酒酵母中If1阻止ATP合成酶亚复合物水解的另一种机制。","authors":"Orane Lerouley, Isabelle Larrieu, Tom Louis Ducrocq, Benoît Pinson, Marie-France Giraud, Arnaud Mourier","doi":"10.1038/s44319-025-00430-8","DOIUrl":null,"url":null,"abstract":"<p><p>The mitochondrial F<sub>1</sub>F<sub>0</sub>-ATP synthase is crucial for maintaining the ATP/ADP balance which is critical for cell metabolism, ion homeostasis and cell proliferation. This enzyme, conserved across evolution, is found in the mitochondria or chloroplasts of eukaryotic cells and the plasma membrane of bacteria. In vitro studies have shown that the mitochondrial F<sub>1</sub>F<sub>0</sub>-ATP synthase is reversible, capable of hydrolyzing instead of synthesizing ATP. In vivo, its reversibility is inhibited by the endogenous peptide If1 (Inhibitory Factor 1), which specifically prevents ATP hydrolysis in a pH-dependent manner. Despite its presumed importance, the loss of If1 in various model organisms does not cause severe phenotypes, suggesting its role may be confined to specific stress or metabolic conditions yet to be discovered. Our analyses indicate that inhibitory peptides are crucial in mitigating mitochondrial depolarizing stress under glyco-oxidative metabolic conditions. Additionally, we found that the absence of If1 destabilizes the nuclear-encoded free F<sub>1</sub> subcomplex. This mechanism highlights the role of If1 in preventing harmful ATP wastage, offering new insights into its function under physiological and pathological conditions.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternative mechanism by which If1 prevents ATP hydrolysis by the ATP synthase subcomplex in S. cerevisiae.\",\"authors\":\"Orane Lerouley, Isabelle Larrieu, Tom Louis Ducrocq, Benoît Pinson, Marie-France Giraud, Arnaud Mourier\",\"doi\":\"10.1038/s44319-025-00430-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mitochondrial F<sub>1</sub>F<sub>0</sub>-ATP synthase is crucial for maintaining the ATP/ADP balance which is critical for cell metabolism, ion homeostasis and cell proliferation. This enzyme, conserved across evolution, is found in the mitochondria or chloroplasts of eukaryotic cells and the plasma membrane of bacteria. In vitro studies have shown that the mitochondrial F<sub>1</sub>F<sub>0</sub>-ATP synthase is reversible, capable of hydrolyzing instead of synthesizing ATP. In vivo, its reversibility is inhibited by the endogenous peptide If1 (Inhibitory Factor 1), which specifically prevents ATP hydrolysis in a pH-dependent manner. Despite its presumed importance, the loss of If1 in various model organisms does not cause severe phenotypes, suggesting its role may be confined to specific stress or metabolic conditions yet to be discovered. Our analyses indicate that inhibitory peptides are crucial in mitigating mitochondrial depolarizing stress under glyco-oxidative metabolic conditions. Additionally, we found that the absence of If1 destabilizes the nuclear-encoded free F<sub>1</sub> subcomplex. This mechanism highlights the role of If1 in preventing harmful ATP wastage, offering new insights into its function under physiological and pathological conditions.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00430-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00430-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An alternative mechanism by which If1 prevents ATP hydrolysis by the ATP synthase subcomplex in S. cerevisiae.
The mitochondrial F1F0-ATP synthase is crucial for maintaining the ATP/ADP balance which is critical for cell metabolism, ion homeostasis and cell proliferation. This enzyme, conserved across evolution, is found in the mitochondria or chloroplasts of eukaryotic cells and the plasma membrane of bacteria. In vitro studies have shown that the mitochondrial F1F0-ATP synthase is reversible, capable of hydrolyzing instead of synthesizing ATP. In vivo, its reversibility is inhibited by the endogenous peptide If1 (Inhibitory Factor 1), which specifically prevents ATP hydrolysis in a pH-dependent manner. Despite its presumed importance, the loss of If1 in various model organisms does not cause severe phenotypes, suggesting its role may be confined to specific stress or metabolic conditions yet to be discovered. Our analyses indicate that inhibitory peptides are crucial in mitigating mitochondrial depolarizing stress under glyco-oxidative metabolic conditions. Additionally, we found that the absence of If1 destabilizes the nuclear-encoded free F1 subcomplex. This mechanism highlights the role of If1 in preventing harmful ATP wastage, offering new insights into its function under physiological and pathological conditions.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.