Oh Seong Kwon, Kyu-Taek Hwang, Won Seok Choi, Ji-Yun Lee
{"title":"BRL-50481改善蛋清蛋白诱导的过敏性哮喘小鼠模型中与脂多糖共暴露的肺部炎症","authors":"Oh Seong Kwon, Kyu-Taek Hwang, Won Seok Choi, Ji-Yun Lee","doi":"10.4062/biomolther.2024.167","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma is an allergic inflammatory disease of the lungs characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Exposure to environmental endotoxins, such as lipopolysaccharide (LPS), can exacerbate asthma severity. Phosphodiesterase (PDE) inactivates cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate, thereby aggravating inflammation. Accordingly, PDE inhibitors could be used to treat asthma. Herein, we studied the effects of BRL-50481 (BRL), a PDE7 inhibitor, in a murine model of ovalbumin (OVA)-induced allergic asthma with co-exposure to LPS. Mice were sensitized, challenged with OVA, and subsequently exposed to LPS. Mice were administered with BRL prior to the OVA challenge. We observed that BRL treatment could suppress hallmark features of asthma, including mediators of eosinophilic and neutrophilic inflammation, such as expression of antigen-specific immunoglobulin (Ig) E, interleukin (IL)-13, IL-6, and mucus hypersecretion. Mice co-exposed to OVA and LPS exhibited marked AHR, which was improved in BRL-treated mice because of inhibition of mucus overproduction. In conclusion, given that PDE7 inhibitors can regulate allergic inflammatory responses, these agents could be potential candidates for treating asthma.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"692-703"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215039/pdf/","citationCount":"0","resultStr":"{\"title\":\"BRL-50481 Ameliorates Lung Inflammation in a Murine Model of Ovalbumin-Induced Allergic Asthma with Co-Exposure to Lipopolysaccharide.\",\"authors\":\"Oh Seong Kwon, Kyu-Taek Hwang, Won Seok Choi, Ji-Yun Lee\",\"doi\":\"10.4062/biomolther.2024.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Asthma is an allergic inflammatory disease of the lungs characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Exposure to environmental endotoxins, such as lipopolysaccharide (LPS), can exacerbate asthma severity. Phosphodiesterase (PDE) inactivates cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate, thereby aggravating inflammation. Accordingly, PDE inhibitors could be used to treat asthma. Herein, we studied the effects of BRL-50481 (BRL), a PDE7 inhibitor, in a murine model of ovalbumin (OVA)-induced allergic asthma with co-exposure to LPS. Mice were sensitized, challenged with OVA, and subsequently exposed to LPS. Mice were administered with BRL prior to the OVA challenge. We observed that BRL treatment could suppress hallmark features of asthma, including mediators of eosinophilic and neutrophilic inflammation, such as expression of antigen-specific immunoglobulin (Ig) E, interleukin (IL)-13, IL-6, and mucus hypersecretion. Mice co-exposed to OVA and LPS exhibited marked AHR, which was improved in BRL-treated mice because of inhibition of mucus overproduction. In conclusion, given that PDE7 inhibitors can regulate allergic inflammatory responses, these agents could be potential candidates for treating asthma.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"692-703\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215039/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.167\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
BRL-50481 Ameliorates Lung Inflammation in a Murine Model of Ovalbumin-Induced Allergic Asthma with Co-Exposure to Lipopolysaccharide.
Asthma is an allergic inflammatory disease of the lungs characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Exposure to environmental endotoxins, such as lipopolysaccharide (LPS), can exacerbate asthma severity. Phosphodiesterase (PDE) inactivates cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate, thereby aggravating inflammation. Accordingly, PDE inhibitors could be used to treat asthma. Herein, we studied the effects of BRL-50481 (BRL), a PDE7 inhibitor, in a murine model of ovalbumin (OVA)-induced allergic asthma with co-exposure to LPS. Mice were sensitized, challenged with OVA, and subsequently exposed to LPS. Mice were administered with BRL prior to the OVA challenge. We observed that BRL treatment could suppress hallmark features of asthma, including mediators of eosinophilic and neutrophilic inflammation, such as expression of antigen-specific immunoglobulin (Ig) E, interleukin (IL)-13, IL-6, and mucus hypersecretion. Mice co-exposed to OVA and LPS exhibited marked AHR, which was improved in BRL-treated mice because of inhibition of mucus overproduction. In conclusion, given that PDE7 inhibitors can regulate allergic inflammatory responses, these agents could be potential candidates for treating asthma.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.