离子迁移谱-质谱法增加寡核苷酸测序信息和通量。

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Jack P Ryan, Gordon W Slysz, Peter Rye, Sarah M Stow, James N Dodds, John Sausen, Erin S Baker
{"title":"离子迁移谱-质谱法增加寡核苷酸测序信息和通量。","authors":"Jack P Ryan, Gordon W Slysz, Peter Rye, Sarah M Stow, James N Dodds, John Sausen, Erin S Baker","doi":"10.1021/jasms.5c00083","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic oligonucleotides, such as antisense oligonucleotides or small interfering RNA, are small chain nucleic acid polymers that can be used therapeutically to control gene expression. Watson-Crick base pair interactions provide the primary mode of interaction between synthetic oligonucleotides and their target molecule, and this binding requires accurate, robust, and rapid sequence verification. The development of high-quality synthetic oligonucleotides and comprehensive analytical workflows for their evaluation is therefore essential. Herein, a platform coupling liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) was applied to facilitate oligonucleotide sequence confirmation. Using IMS, multiple charge states of the same oligonucleotide were mobility separated and analyzed simultaneously. Furthermore, all-ion fragmentation was implemented to provide sequence coverage for each charge state using fewer injections than current targeted multiple injection LC-MS methods. The results demonstrated herein denote sequence coverage is generally inversely proportional to oligonucleotide length (<i>i</i>.<i>e</i>., lower fidelity coverage for longer strands), with observed sequence coverages ranging between 40% and 80% for molecules comprised of 20-40 residues. To ease the burden of spectral interpretation and sequence determination for the LC-IMS-CID-MS data, an analysis workflow using the Pacific Northwest National Laboratories (PNNL) preprocessor and Agilent's BioConfirm software was developed.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing Oligonucleotide Sequencing Information and Throughput with Ion Mobility Spectrometry-Mass Spectrometry.\",\"authors\":\"Jack P Ryan, Gordon W Slysz, Peter Rye, Sarah M Stow, James N Dodds, John Sausen, Erin S Baker\",\"doi\":\"10.1021/jasms.5c00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthetic oligonucleotides, such as antisense oligonucleotides or small interfering RNA, are small chain nucleic acid polymers that can be used therapeutically to control gene expression. Watson-Crick base pair interactions provide the primary mode of interaction between synthetic oligonucleotides and their target molecule, and this binding requires accurate, robust, and rapid sequence verification. The development of high-quality synthetic oligonucleotides and comprehensive analytical workflows for their evaluation is therefore essential. Herein, a platform coupling liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) was applied to facilitate oligonucleotide sequence confirmation. Using IMS, multiple charge states of the same oligonucleotide were mobility separated and analyzed simultaneously. Furthermore, all-ion fragmentation was implemented to provide sequence coverage for each charge state using fewer injections than current targeted multiple injection LC-MS methods. The results demonstrated herein denote sequence coverage is generally inversely proportional to oligonucleotide length (<i>i</i>.<i>e</i>., lower fidelity coverage for longer strands), with observed sequence coverages ranging between 40% and 80% for molecules comprised of 20-40 residues. To ease the burden of spectral interpretation and sequence determination for the LC-IMS-CID-MS data, an analysis workflow using the Pacific Northwest National Laboratories (PNNL) preprocessor and Agilent's BioConfirm software was developed.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.5c00083\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.5c00083","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

合成寡核苷酸,如反义寡核苷酸或小干扰RNA,是小链核酸聚合物,可用于治疗控制基因表达。沃森-克里克碱基对相互作用提供了合成寡核苷酸与其靶分子之间相互作用的主要模式,这种结合需要准确、可靠和快速的序列验证。因此,开发高质量的合成寡核苷酸及其评价的综合分析工作流程至关重要。本研究采用液相色谱、离子迁移率谱、碰撞诱导解离和质谱(LC-IMS-CID-MS)相结合的平台,促进寡核苷酸序列的确认。利用IMS对同一寡核苷酸的多个电荷态同时进行迁移率分离和分析。此外,与目前的靶向多次进样LC-MS方法相比,采用全离子碎片化方法可以使用更少的进样次数来提供每个电荷状态的序列覆盖。本文所示的结果表明,序列覆盖率通常与寡核苷酸长度成反比(即,较长链的保真度覆盖率较低),对于由20-40个残基组成的分子,观察到的序列覆盖率在40%至80%之间。为了减轻LC-IMS-CID-MS数据的光谱解释和序列确定的负担,开发了使用太平洋西北国家实验室(PNNL)预处理和安捷伦BioConfirm软件的分析工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing Oligonucleotide Sequencing Information and Throughput with Ion Mobility Spectrometry-Mass Spectrometry.

Synthetic oligonucleotides, such as antisense oligonucleotides or small interfering RNA, are small chain nucleic acid polymers that can be used therapeutically to control gene expression. Watson-Crick base pair interactions provide the primary mode of interaction between synthetic oligonucleotides and their target molecule, and this binding requires accurate, robust, and rapid sequence verification. The development of high-quality synthetic oligonucleotides and comprehensive analytical workflows for their evaluation is therefore essential. Herein, a platform coupling liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) was applied to facilitate oligonucleotide sequence confirmation. Using IMS, multiple charge states of the same oligonucleotide were mobility separated and analyzed simultaneously. Furthermore, all-ion fragmentation was implemented to provide sequence coverage for each charge state using fewer injections than current targeted multiple injection LC-MS methods. The results demonstrated herein denote sequence coverage is generally inversely proportional to oligonucleotide length (i.e., lower fidelity coverage for longer strands), with observed sequence coverages ranging between 40% and 80% for molecules comprised of 20-40 residues. To ease the burden of spectral interpretation and sequence determination for the LC-IMS-CID-MS data, an analysis workflow using the Pacific Northwest National Laboratories (PNNL) preprocessor and Agilent's BioConfirm software was developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信