Solji Cho, Yunkyoung Jung, Shin-Joung Rho, Yong-Ro Kim
{"title":"胡椒碱与环葡聚糖络合的稳定性、生物利用度和细胞抗氧化活性。","authors":"Solji Cho, Yunkyoung Jung, Shin-Joung Rho, Yong-Ro Kim","doi":"10.1007/s10068-025-01884-1","DOIUrl":null,"url":null,"abstract":"<div><p>Piperine, the primary bioactive compound in black pepper, was complexed with cyclic glucans, including cycloamylose (CA), α-cyclodextrin, and 2-hydroxypropyl-β-cyclodextrin, to investigate the complexation effects on its solubility, stability, bioavailability, and cellular antioxidant activity (CAA). The formation of inclusion complex (IC) significantly improved the phase solubility of piperine and enhanced its stability under ultraviolet light, heat, and acidic conditions. Additionally, IC increased the retention rate of piperine after in vitro digestion. Permeability analysis using a Caco-2 cell monolayer showed that IC samples, particularly CAIC, reduced the efflux ratio compared to free piperine by decreasing the apparent permeability coefficient from apical-to-basolateral (P<sub>app (B-A)</sub>). Moreover, the enhanced cellular uptake capacity of piperine in IC contributed to a marked improvement in its CAA, CAIC showing the most pronounced effect. Therefore, inclusion complexation with cyclic glucans, especially CA, can be a practical strategy to overcome the lower solubility and bioavailability of free piperine in various industrial applications.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 11","pages":"2475 - 2488"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145342/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stability, bioavailability, and cellular antioxidant activity of piperine complexed with cyclic glucans\",\"authors\":\"Solji Cho, Yunkyoung Jung, Shin-Joung Rho, Yong-Ro Kim\",\"doi\":\"10.1007/s10068-025-01884-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piperine, the primary bioactive compound in black pepper, was complexed with cyclic glucans, including cycloamylose (CA), α-cyclodextrin, and 2-hydroxypropyl-β-cyclodextrin, to investigate the complexation effects on its solubility, stability, bioavailability, and cellular antioxidant activity (CAA). The formation of inclusion complex (IC) significantly improved the phase solubility of piperine and enhanced its stability under ultraviolet light, heat, and acidic conditions. Additionally, IC increased the retention rate of piperine after in vitro digestion. Permeability analysis using a Caco-2 cell monolayer showed that IC samples, particularly CAIC, reduced the efflux ratio compared to free piperine by decreasing the apparent permeability coefficient from apical-to-basolateral (P<sub>app (B-A)</sub>). Moreover, the enhanced cellular uptake capacity of piperine in IC contributed to a marked improvement in its CAA, CAIC showing the most pronounced effect. Therefore, inclusion complexation with cyclic glucans, especially CA, can be a practical strategy to overcome the lower solubility and bioavailability of free piperine in various industrial applications.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"34 11\",\"pages\":\"2475 - 2488\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145342/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-025-01884-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-025-01884-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Stability, bioavailability, and cellular antioxidant activity of piperine complexed with cyclic glucans
Piperine, the primary bioactive compound in black pepper, was complexed with cyclic glucans, including cycloamylose (CA), α-cyclodextrin, and 2-hydroxypropyl-β-cyclodextrin, to investigate the complexation effects on its solubility, stability, bioavailability, and cellular antioxidant activity (CAA). The formation of inclusion complex (IC) significantly improved the phase solubility of piperine and enhanced its stability under ultraviolet light, heat, and acidic conditions. Additionally, IC increased the retention rate of piperine after in vitro digestion. Permeability analysis using a Caco-2 cell monolayer showed that IC samples, particularly CAIC, reduced the efflux ratio compared to free piperine by decreasing the apparent permeability coefficient from apical-to-basolateral (Papp (B-A)). Moreover, the enhanced cellular uptake capacity of piperine in IC contributed to a marked improvement in its CAA, CAIC showing the most pronounced effect. Therefore, inclusion complexation with cyclic glucans, especially CA, can be a practical strategy to overcome the lower solubility and bioavailability of free piperine in various industrial applications.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.