阶段播种可以通过深度学习为结构解决方案提供一个入口。

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Anders Østergaard Madsen
{"title":"阶段播种可以通过深度学习为结构解决方案提供一个入口。","authors":"Anders Østergaard Madsen","doi":"10.1107/S2053273325004814","DOIUrl":null,"url":null,"abstract":"<p><p>The phase-seeding method proposed by Carrozzini et al. [(2025), Acta Cryst. A81, 188-201] introduces a strategy for integrating artificial intelligence (AI) with established ab initio phasing techniques. Rather than presenting an AI-based phasing solution itself, the authors demonstrate how traditional crystallographic methods can be significantly enhanced if provided with a small subset of approximate phase values - a `phase seed' - that could, in principle, be generated by a machine learning model. By discretizing phase values into a few angular bins, the method transforms the continuous phase problem into a classification task, thereby reducing the computational burden on AI training. This hybrid approach shows promise for improving structure solution, particularly for large and complex non-centrosymmetric crystals, and opens a pathway for future AI-assisted crystallographic workflows.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"251-253"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase seeding may provide a gateway to structure solution by deep learning.\",\"authors\":\"Anders Østergaard Madsen\",\"doi\":\"10.1107/S2053273325004814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phase-seeding method proposed by Carrozzini et al. [(2025), Acta Cryst. A81, 188-201] introduces a strategy for integrating artificial intelligence (AI) with established ab initio phasing techniques. Rather than presenting an AI-based phasing solution itself, the authors demonstrate how traditional crystallographic methods can be significantly enhanced if provided with a small subset of approximate phase values - a `phase seed' - that could, in principle, be generated by a machine learning model. By discretizing phase values into a few angular bins, the method transforms the continuous phase problem into a classification task, thereby reducing the computational burden on AI training. This hybrid approach shows promise for improving structure solution, particularly for large and complex non-centrosymmetric crystals, and opens a pathway for future AI-assisted crystallographic workflows.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\" \",\"pages\":\"251-253\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273325004814\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273325004814","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Carrozzini等人提出的相位播种方法[2025],晶体学报。[A81, 188-201]介绍了将人工智能(AI)与已建立的从头算相位技术相结合的策略。作者并没有展示基于人工智能的相位解决方案本身,而是展示了如果提供一小部分近似相位值——一种“相位种子”——原则上可以由机器学习模型生成,那么传统的晶体学方法是如何得到显著增强的。该方法通过将相位值离散为几个角度的bin,将连续相位问题转化为分类任务,从而减少了人工智能训练的计算负担。这种混合方法有望改善结构解决方案,特别是对于大型和复杂的非中心对称晶体,并为未来人工智能辅助晶体工作流程开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase seeding may provide a gateway to structure solution by deep learning.

The phase-seeding method proposed by Carrozzini et al. [(2025), Acta Cryst. A81, 188-201] introduces a strategy for integrating artificial intelligence (AI) with established ab initio phasing techniques. Rather than presenting an AI-based phasing solution itself, the authors demonstrate how traditional crystallographic methods can be significantly enhanced if provided with a small subset of approximate phase values - a `phase seed' - that could, in principle, be generated by a machine learning model. By discretizing phase values into a few angular bins, the method transforms the continuous phase problem into a classification task, thereby reducing the computational burden on AI training. This hybrid approach shows promise for improving structure solution, particularly for large and complex non-centrosymmetric crystals, and opens a pathway for future AI-assisted crystallographic workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信