Emily M Kaye, Jitka Becanova, Simon Vojta, Rainer Lohmann, Fabian Christoph Fischer, Angela Slitt
{"title":"在缺乏白蛋白的小鼠中,毒性动力学和全氟辛烷磺酸诱导的肝蛋白表达明显改变。","authors":"Emily M Kaye, Jitka Becanova, Simon Vojta, Rainer Lohmann, Fabian Christoph Fischer, Angela Slitt","doi":"10.1021/acs.chemrestox.4c00508","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluorooctanesulfonic acid (PFOS) is a ubiquitous perfluoroalkyl substance (PFAS) linked to liver disease and obesity in humans. Binding studies suggest that albumin is a crucial blood protein influencing PFOS toxicokinetics and hepatotoxicity; however, its role has not been mechanistically tested in vivo. This study used an albumin-deficient mouse model to investigate the relevance of albumin in PFOS tissue distribution and liver disease end points. Adult male C57BL/6J wild-type (Alb<sup>+/+</sup>) and albumin-deficient (Alb<sup>-/-</sup>) mice were orally gavaged daily for 7 days with either vehicle or PFOS at 0.5 or 10 mg/kg body weight. The measured PFOS concentrations in plasma were significantly lower in Alb<sup>-/-</sup> mice compared to those in Alb<sup>+/+</sup> mice, while liver concentrations were significantly higher in Alb<sup>-/-</sup> mice. Binding experiments confirmed these findings, indicating that PFOS toxicokinetics are driven by plasma and tissue binding. Significant changes in liver protein expression did not translate into differences in liver disease end points between genotypes, suggesting the need for chronic exposure studies. Our data imply that disease-related albumin deficiency in humans can influence PFAS toxicokinetics and susceptibility to hepatotoxicity. Our framework using knockout mice can be adapted in future studies to assess the relevance of protein binding and membrane transporters in PFAS distribution and elimination.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicokinetics and Perfluorooctanesulfonic Acid-Induced Liver Protein Expression Are Markedly Altered in Mice Lacking Albumin.\",\"authors\":\"Emily M Kaye, Jitka Becanova, Simon Vojta, Rainer Lohmann, Fabian Christoph Fischer, Angela Slitt\",\"doi\":\"10.1021/acs.chemrestox.4c00508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perfluorooctanesulfonic acid (PFOS) is a ubiquitous perfluoroalkyl substance (PFAS) linked to liver disease and obesity in humans. Binding studies suggest that albumin is a crucial blood protein influencing PFOS toxicokinetics and hepatotoxicity; however, its role has not been mechanistically tested in vivo. This study used an albumin-deficient mouse model to investigate the relevance of albumin in PFOS tissue distribution and liver disease end points. Adult male C57BL/6J wild-type (Alb<sup>+/+</sup>) and albumin-deficient (Alb<sup>-/-</sup>) mice were orally gavaged daily for 7 days with either vehicle or PFOS at 0.5 or 10 mg/kg body weight. The measured PFOS concentrations in plasma were significantly lower in Alb<sup>-/-</sup> mice compared to those in Alb<sup>+/+</sup> mice, while liver concentrations were significantly higher in Alb<sup>-/-</sup> mice. Binding experiments confirmed these findings, indicating that PFOS toxicokinetics are driven by plasma and tissue binding. Significant changes in liver protein expression did not translate into differences in liver disease end points between genotypes, suggesting the need for chronic exposure studies. Our data imply that disease-related albumin deficiency in humans can influence PFAS toxicokinetics and susceptibility to hepatotoxicity. Our framework using knockout mice can be adapted in future studies to assess the relevance of protein binding and membrane transporters in PFAS distribution and elimination.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00508\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00508","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Toxicokinetics and Perfluorooctanesulfonic Acid-Induced Liver Protein Expression Are Markedly Altered in Mice Lacking Albumin.
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous perfluoroalkyl substance (PFAS) linked to liver disease and obesity in humans. Binding studies suggest that albumin is a crucial blood protein influencing PFOS toxicokinetics and hepatotoxicity; however, its role has not been mechanistically tested in vivo. This study used an albumin-deficient mouse model to investigate the relevance of albumin in PFOS tissue distribution and liver disease end points. Adult male C57BL/6J wild-type (Alb+/+) and albumin-deficient (Alb-/-) mice were orally gavaged daily for 7 days with either vehicle or PFOS at 0.5 or 10 mg/kg body weight. The measured PFOS concentrations in plasma were significantly lower in Alb-/- mice compared to those in Alb+/+ mice, while liver concentrations were significantly higher in Alb-/- mice. Binding experiments confirmed these findings, indicating that PFOS toxicokinetics are driven by plasma and tissue binding. Significant changes in liver protein expression did not translate into differences in liver disease end points between genotypes, suggesting the need for chronic exposure studies. Our data imply that disease-related albumin deficiency in humans can influence PFAS toxicokinetics and susceptibility to hepatotoxicity. Our framework using knockout mice can be adapted in future studies to assess the relevance of protein binding and membrane transporters in PFAS distribution and elimination.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.