Yujiao Wang , Daojun Xie , Shijia Ma , Yuhe Wang , Chengcheng Zhang , Zhuyue Chen
{"title":"-细辛酮通过靶向PINK1/帕金森依赖性线粒体自噬减轻脑缺血/再灌注损伤","authors":"Yujiao Wang , Daojun Xie , Shijia Ma , Yuhe Wang , Chengcheng Zhang , Zhuyue Chen","doi":"10.1016/j.ejphar.2025.177831","DOIUrl":null,"url":null,"abstract":"<div><div>Cerebral ischemia–reperfusion injury (CIRI) describes a secondary type of brain damage that happens when blood flow is restored to brain tissue; it ranks among the primary contributors of disability and mortality. The activation of PINK1/Parkin-mediated mitophagy exerts neuroprotective effects during CIRI. Beta-asarone (β-ASA), the principal active component of traditional natural drugs such as Acori tatarinowii rhizoma and Ligusticum chuanxiong Hort, possesses anti-inflammatory, antioxidant, and autophagy-enhancing properties. However, whether β-ASA can ameliorate CIRI by regulating the PINK1/Parkin-dependent mitophagy pathway remains unclear and warrants further investigation. The purpose of this study is to explore the underlying mechanism through which β-ASA influences PINK1/Parkin-mediated mitophagy in the hippocampus following ischemia<strong>–</strong>reperfusion. In the results section, the present study examined the effects of β-ASA on middle cerebral artery occlusion/reperfusion (MCAO/R)-induced neurological deficits using the Longa test and TTC staining, rats were then treated with β-ASA (20, 40, and 80 mg/kg). The findings demonstrate that β-ASA promotes functional recovery in post-ischemic stroke, as evidenced by improved neurological function, reduced infarct volume, decreased neuronal damage, and lowered neuronal apoptosis. Furthermore, β-ASA significantly enhanced autophagy by increasing Beclin1 expression while reducing P62 and LC3-I/LC3-II expression. Additionally, β-ASA markedly activated PINK1/Parkin-mediated mitophagy. Finally, the introduction of mitophagy inhibitors was employed to clarify the relationship between autophagy and β-ASA, indicating that β-ASA promotes autophagy by activating the PINK1/Parkin signalling pathway. In conclusion, this study elucidates that β-ASA alleviates cerebral infarction, neurological impairment, and neuronal damage by targeting PINK1/Parkin-dependent mitophagy, thereby presenting a potential therapeutic strategy for CIRI.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"1002 ","pages":"Article 177831"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-asarone alleviated cerebral ischemia/reperfusion injury by targeting PINK1/Parkin-dependent mitophagy\",\"authors\":\"Yujiao Wang , Daojun Xie , Shijia Ma , Yuhe Wang , Chengcheng Zhang , Zhuyue Chen\",\"doi\":\"10.1016/j.ejphar.2025.177831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cerebral ischemia–reperfusion injury (CIRI) describes a secondary type of brain damage that happens when blood flow is restored to brain tissue; it ranks among the primary contributors of disability and mortality. The activation of PINK1/Parkin-mediated mitophagy exerts neuroprotective effects during CIRI. Beta-asarone (β-ASA), the principal active component of traditional natural drugs such as Acori tatarinowii rhizoma and Ligusticum chuanxiong Hort, possesses anti-inflammatory, antioxidant, and autophagy-enhancing properties. However, whether β-ASA can ameliorate CIRI by regulating the PINK1/Parkin-dependent mitophagy pathway remains unclear and warrants further investigation. The purpose of this study is to explore the underlying mechanism through which β-ASA influences PINK1/Parkin-mediated mitophagy in the hippocampus following ischemia<strong>–</strong>reperfusion. In the results section, the present study examined the effects of β-ASA on middle cerebral artery occlusion/reperfusion (MCAO/R)-induced neurological deficits using the Longa test and TTC staining, rats were then treated with β-ASA (20, 40, and 80 mg/kg). The findings demonstrate that β-ASA promotes functional recovery in post-ischemic stroke, as evidenced by improved neurological function, reduced infarct volume, decreased neuronal damage, and lowered neuronal apoptosis. Furthermore, β-ASA significantly enhanced autophagy by increasing Beclin1 expression while reducing P62 and LC3-I/LC3-II expression. Additionally, β-ASA markedly activated PINK1/Parkin-mediated mitophagy. Finally, the introduction of mitophagy inhibitors was employed to clarify the relationship between autophagy and β-ASA, indicating that β-ASA promotes autophagy by activating the PINK1/Parkin signalling pathway. In conclusion, this study elucidates that β-ASA alleviates cerebral infarction, neurological impairment, and neuronal damage by targeting PINK1/Parkin-dependent mitophagy, thereby presenting a potential therapeutic strategy for CIRI.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"1002 \",\"pages\":\"Article 177831\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299925005850\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925005850","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Beta-asarone alleviated cerebral ischemia/reperfusion injury by targeting PINK1/Parkin-dependent mitophagy
Cerebral ischemia–reperfusion injury (CIRI) describes a secondary type of brain damage that happens when blood flow is restored to brain tissue; it ranks among the primary contributors of disability and mortality. The activation of PINK1/Parkin-mediated mitophagy exerts neuroprotective effects during CIRI. Beta-asarone (β-ASA), the principal active component of traditional natural drugs such as Acori tatarinowii rhizoma and Ligusticum chuanxiong Hort, possesses anti-inflammatory, antioxidant, and autophagy-enhancing properties. However, whether β-ASA can ameliorate CIRI by regulating the PINK1/Parkin-dependent mitophagy pathway remains unclear and warrants further investigation. The purpose of this study is to explore the underlying mechanism through which β-ASA influences PINK1/Parkin-mediated mitophagy in the hippocampus following ischemia–reperfusion. In the results section, the present study examined the effects of β-ASA on middle cerebral artery occlusion/reperfusion (MCAO/R)-induced neurological deficits using the Longa test and TTC staining, rats were then treated with β-ASA (20, 40, and 80 mg/kg). The findings demonstrate that β-ASA promotes functional recovery in post-ischemic stroke, as evidenced by improved neurological function, reduced infarct volume, decreased neuronal damage, and lowered neuronal apoptosis. Furthermore, β-ASA significantly enhanced autophagy by increasing Beclin1 expression while reducing P62 and LC3-I/LC3-II expression. Additionally, β-ASA markedly activated PINK1/Parkin-mediated mitophagy. Finally, the introduction of mitophagy inhibitors was employed to clarify the relationship between autophagy and β-ASA, indicating that β-ASA promotes autophagy by activating the PINK1/Parkin signalling pathway. In conclusion, this study elucidates that β-ASA alleviates cerebral infarction, neurological impairment, and neuronal damage by targeting PINK1/Parkin-dependent mitophagy, thereby presenting a potential therapeutic strategy for CIRI.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.