具有不受限制形状参数的矩阵变量伽马分布

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Tomasz J. Kozubowski , Stepan Mazur , Krzysztof Podgórski
{"title":"具有不受限制形状参数的矩阵变量伽马分布","authors":"Tomasz J. Kozubowski ,&nbsp;Stepan Mazur ,&nbsp;Krzysztof Podgórski","doi":"10.1016/j.jmva.2025.105457","DOIUrl":null,"url":null,"abstract":"<div><div>Matrix gamma distributions are among the most important matrix-variate laws in multivariate statistical analysis, as they encompass the Wishart distributions – the sample covariance distributions under Gaussianity – and provide a natural model for random covariances in Bayesian multivariate methods. A substantial body of literature explores this class of distributions, traditionally characterized by a shape parameter restricted to the (Gindikin) set <span><math><mrow><mrow><mo>{</mo><mi>i</mi><mo>/</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>}</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>k</mi><mo>×</mo><mi>k</mi></mrow></math></span> is the dimension of the matrix variate. In this paper, we show that matrix-variate gamma distributions can be naturally extended to allow the entire positive half-line as the domain of the shape parameter. This extension not only unifies the well-known singular Wishart and non-singular matrix-variate gamma distributions but also introduces new singular matrix-variate distributions with shape parameters outside the Gindikin set. While permutation invariance is no longer preserved in the singular, non-Wishart case, and its scaling properties require special treatment, our unified framework leads to new representations that bypass the restrictions of the Gindikin set. We provide several elegant and convenient stochastic representations for matrix-variate gamma distributions, which are novel even in the non-singular case. Notably, we demonstrate that the lower triangular matrix in the Cholesky factorization of a gamma-distributed matrix – whether singular or not – follows a triangular matrix-variate Rayleigh distribution, introducing a new class of matrix-valued variables that extends the classical univariate Rayleigh distribution to the matrix domain. We also briefly address statistical issues and potential applications to non-elliptical multivariate heavy tailed data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"209 ","pages":"Article 105457"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix variate gamma distributions with unrestricted shape parameter\",\"authors\":\"Tomasz J. Kozubowski ,&nbsp;Stepan Mazur ,&nbsp;Krzysztof Podgórski\",\"doi\":\"10.1016/j.jmva.2025.105457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Matrix gamma distributions are among the most important matrix-variate laws in multivariate statistical analysis, as they encompass the Wishart distributions – the sample covariance distributions under Gaussianity – and provide a natural model for random covariances in Bayesian multivariate methods. A substantial body of literature explores this class of distributions, traditionally characterized by a shape parameter restricted to the (Gindikin) set <span><math><mrow><mrow><mo>{</mo><mi>i</mi><mo>/</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>}</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>k</mi><mo>×</mo><mi>k</mi></mrow></math></span> is the dimension of the matrix variate. In this paper, we show that matrix-variate gamma distributions can be naturally extended to allow the entire positive half-line as the domain of the shape parameter. This extension not only unifies the well-known singular Wishart and non-singular matrix-variate gamma distributions but also introduces new singular matrix-variate distributions with shape parameters outside the Gindikin set. While permutation invariance is no longer preserved in the singular, non-Wishart case, and its scaling properties require special treatment, our unified framework leads to new representations that bypass the restrictions of the Gindikin set. We provide several elegant and convenient stochastic representations for matrix-variate gamma distributions, which are novel even in the non-singular case. Notably, we demonstrate that the lower triangular matrix in the Cholesky factorization of a gamma-distributed matrix – whether singular or not – follows a triangular matrix-variate Rayleigh distribution, introducing a new class of matrix-valued variables that extends the classical univariate Rayleigh distribution to the matrix domain. We also briefly address statistical issues and potential applications to non-elliptical multivariate heavy tailed data.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"209 \",\"pages\":\"Article 105457\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000521\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

矩阵伽玛分布是多元统计分析中最重要的矩阵变量规律之一,因为它们包含了Wishart分布(高斯态下的样本协方差分布),并为贝叶斯多元方法中的随机协方差提供了一个自然模型。大量的文献探讨了这类分布,传统上的特征是一个形状参数限制在(Gindikin)集合{i/2,i∈{1,…,k−1}}∪((k−1)/2,∞),其中k×k是矩阵变量的维数。在本文中,我们证明了矩阵变量伽马分布可以自然地扩展到允许整个正半线作为形状参数的定义域。该扩展不仅统一了众所周知的奇异Wishart和非奇异矩阵变量伽玛分布,而且引入了新的奇异矩阵变量分布,其形状参数在Gindikin集之外。当置换不变性不再保留在奇异、非wishart情况下,并且它的标度性质需要特殊处理时,我们的统一框架导致了绕过Gindikin集限制的新表示。我们提供了几个优雅和方便的矩阵变量伽马分布的随机表示,即使在非奇异情况下也是新颖的。值得注意的是,我们证明了分布矩阵的Cholesky分解中的下三角矩阵-无论奇异与否-遵循三角矩阵-变量瑞利分布,引入了一类新的矩阵值变量,将经典的单变量瑞利分布扩展到矩阵域。我们还简要地讨论了非椭圆多变量重尾数据的统计问题和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix variate gamma distributions with unrestricted shape parameter
Matrix gamma distributions are among the most important matrix-variate laws in multivariate statistical analysis, as they encompass the Wishart distributions – the sample covariance distributions under Gaussianity – and provide a natural model for random covariances in Bayesian multivariate methods. A substantial body of literature explores this class of distributions, traditionally characterized by a shape parameter restricted to the (Gindikin) set {i/2,i{1,,k1}}((k1)/2,), where k×k is the dimension of the matrix variate. In this paper, we show that matrix-variate gamma distributions can be naturally extended to allow the entire positive half-line as the domain of the shape parameter. This extension not only unifies the well-known singular Wishart and non-singular matrix-variate gamma distributions but also introduces new singular matrix-variate distributions with shape parameters outside the Gindikin set. While permutation invariance is no longer preserved in the singular, non-Wishart case, and its scaling properties require special treatment, our unified framework leads to new representations that bypass the restrictions of the Gindikin set. We provide several elegant and convenient stochastic representations for matrix-variate gamma distributions, which are novel even in the non-singular case. Notably, we demonstrate that the lower triangular matrix in the Cholesky factorization of a gamma-distributed matrix – whether singular or not – follows a triangular matrix-variate Rayleigh distribution, introducing a new class of matrix-valued variables that extends the classical univariate Rayleigh distribution to the matrix domain. We also briefly address statistical issues and potential applications to non-elliptical multivariate heavy tailed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信