基于变压器增强时间卷积网络的CFETR多用途过载机器人改道维修控制延迟补偿

IF 2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Chenhui Wan , Zibo Qi , Hongbin Huang , Jie Liu , Youmin Hu , Hongtao Pan , Yong Cheng , Yang Cheng , Zhongxu Hu
{"title":"基于变压器增强时间卷积网络的CFETR多用途过载机器人改道维修控制延迟补偿","authors":"Chenhui Wan ,&nbsp;Zibo Qi ,&nbsp;Hongbin Huang ,&nbsp;Jie Liu ,&nbsp;Youmin Hu ,&nbsp;Hongtao Pan ,&nbsp;Yong Cheng ,&nbsp;Yang Cheng ,&nbsp;Zhongxu Hu","doi":"10.1016/j.fusengdes.2025.115183","DOIUrl":null,"url":null,"abstract":"<div><div>Communication delays in the CFETR (China Fusion Engineering Test Reactor) Multi-Purpose Overload Robot (CMOR), designed for divertor maintenance, significantly degrade control precision and operational reliability. This study proposed a Transformer-enhanced Temporal Convolutional Network (TransformerTCN) to address these delays. By integrating the local temporal feature extraction of Temporal Convolutional Networks (TCNs) with the long-range dependency modeling of Transformer’s self-attention mechanism, TransformerTCN accurately predicted future robot states and dynamically adjusted control commands. Validation in ROS-based simulations demonstrated that TransformerTCN outperformed traditional models, achieving a Mean Squared Error (MSE) of 0.002 and an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> score of 0.994, showcasing its superior accuracy and robustness. These results highlight TransformerTCN as a powerful solution for delay compensation in robotic systems operating in challenging nuclear fusion environments.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"219 ","pages":"Article 115183"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensating control delays in the CFETR Multi-Purpose Overload Robot for divertor maintenance by using transformer-enhanced Temporal Convolutional Network\",\"authors\":\"Chenhui Wan ,&nbsp;Zibo Qi ,&nbsp;Hongbin Huang ,&nbsp;Jie Liu ,&nbsp;Youmin Hu ,&nbsp;Hongtao Pan ,&nbsp;Yong Cheng ,&nbsp;Yang Cheng ,&nbsp;Zhongxu Hu\",\"doi\":\"10.1016/j.fusengdes.2025.115183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Communication delays in the CFETR (China Fusion Engineering Test Reactor) Multi-Purpose Overload Robot (CMOR), designed for divertor maintenance, significantly degrade control precision and operational reliability. This study proposed a Transformer-enhanced Temporal Convolutional Network (TransformerTCN) to address these delays. By integrating the local temporal feature extraction of Temporal Convolutional Networks (TCNs) with the long-range dependency modeling of Transformer’s self-attention mechanism, TransformerTCN accurately predicted future robot states and dynamically adjusted control commands. Validation in ROS-based simulations demonstrated that TransformerTCN outperformed traditional models, achieving a Mean Squared Error (MSE) of 0.002 and an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> score of 0.994, showcasing its superior accuracy and robustness. These results highlight TransformerTCN as a powerful solution for delay compensation in robotic systems operating in challenging nuclear fusion environments.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"219 \",\"pages\":\"Article 115183\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625003801\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625003801","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用于转向器维护的CFETR(中国聚变工程试验堆)多用途过载机器人(cmoor)的通信延迟严重降低了控制精度和运行可靠性。本研究提出了一种变压器增强的时间卷积网络(TransformerTCN)来解决这些延迟。TransformerTCN通过将时域卷积网络(tcn)的局部时间特征提取与Transformer自关注机制的远程依赖建模相结合,能够准确预测机器人的未来状态并动态调整控制命令。基于ros的仿真验证表明,TransformerTCN优于传统模型,均方误差(MSE)为0.002,R2评分为0.994,显示了其优越的准确性和鲁棒性。这些结果突出了TransformerTCN作为在具有挑战性的核聚变环境中运行的机器人系统延迟补偿的强大解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compensating control delays in the CFETR Multi-Purpose Overload Robot for divertor maintenance by using transformer-enhanced Temporal Convolutional Network
Communication delays in the CFETR (China Fusion Engineering Test Reactor) Multi-Purpose Overload Robot (CMOR), designed for divertor maintenance, significantly degrade control precision and operational reliability. This study proposed a Transformer-enhanced Temporal Convolutional Network (TransformerTCN) to address these delays. By integrating the local temporal feature extraction of Temporal Convolutional Networks (TCNs) with the long-range dependency modeling of Transformer’s self-attention mechanism, TransformerTCN accurately predicted future robot states and dynamically adjusted control commands. Validation in ROS-based simulations demonstrated that TransformerTCN outperformed traditional models, achieving a Mean Squared Error (MSE) of 0.002 and an R2 score of 0.994, showcasing its superior accuracy and robustness. These results highlight TransformerTCN as a powerful solution for delay compensation in robotic systems operating in challenging nuclear fusion environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信