Yifan Lu , Yu Sun , Fatma Saaoud , Keman Xu , Ying Shao , Baosheng Han , Xiaohua Jiang , Laisel Martinez , Roberto I. Vazquez-Padron , Sadia Mohsin , Huaqing Zhao , Hong Wang , Xiaofeng Yang
{"title":"尿毒症毒素受体NR1H3参与高脂血症和慢性肾脏疾病-加速血管炎症,部分被新的YBX2抗ros途径抑制","authors":"Yifan Lu , Yu Sun , Fatma Saaoud , Keman Xu , Ying Shao , Baosheng Han , Xiaohua Jiang , Laisel Martinez , Roberto I. Vazquez-Padron , Sadia Mohsin , Huaqing Zhao , Hong Wang , Xiaofeng Yang","doi":"10.1016/j.redox.2025.103724","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperlipidemia and chronic kidney disease (CKD) are well-established risk factors for cardiovascular disease and act synergistically to promote vascular inflammation and disease progression. However, the mechanisms underlying this synergetic effect remain largely unknown. Using a mouse model combining hyperlipidemia (via high-fat diet feeding, HFD) with 5/6 nephrectomy-induced CKD, we made the following significant findings: 1) HFD + CKD upregulated 1179 genes in mouse aortas and induced prominent reactive oxygen species (ROS), far more than either HFD or CKD alone. 2) HFD + CKD upregulated 86 CRISPRi-identified mitochondrial ROS regulators, 36 CRISPRi-identified cellular ROS regulators, and 19 GSEA-collected ROS regulators. These changes were associated with the upregulations of 48 cytokines, 7 highest toxicity uremic toxin receptors—including CD1D, FCGRT, AHR, IL6RA AGER, NR1H3 and NPY5R—in aortas. 3) These uremic toxin receptors emerged as novel promoters of inflammation and trained immunity. Deficiencies in CD1D, AHR, AGER, and the trained immunity promoter SET7 each downregulated up to 5.5 % of the genes upregulated by HFD + CKD. Conversely, activation of NR1H3 using an agonist upregulated up to 12.2 % of these genes. 4) The expression of 46 cytokine genes was strongly associated with NR1H3 upregulation. 5) The NR1H3 agonist also induced the expression of 28 ROS regulators, including YBX2, a novel anti-ROS transcription factor and RNA-binding protein, suggesting a potential negative feedback mechanism. YBX2 deficiency increased the cellular ROS level, while YBX2 overexpression suppressed 27 proinflammatory genes induced by HFD + CKD. Our findings provide novel insights into the role of the NR1H3-YBX2 axis in regulating inflammation accelerated by hyperlipidemia and CKD.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"85 ","pages":"Article 103724"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uremic toxin receptor NR1H3 contributes to hyperlipidemia- and chronic kidney disease-accelerated vascular inflammation, which is partially suppressed by novel YBX2 anti-ROS pathway\",\"authors\":\"Yifan Lu , Yu Sun , Fatma Saaoud , Keman Xu , Ying Shao , Baosheng Han , Xiaohua Jiang , Laisel Martinez , Roberto I. Vazquez-Padron , Sadia Mohsin , Huaqing Zhao , Hong Wang , Xiaofeng Yang\",\"doi\":\"10.1016/j.redox.2025.103724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperlipidemia and chronic kidney disease (CKD) are well-established risk factors for cardiovascular disease and act synergistically to promote vascular inflammation and disease progression. However, the mechanisms underlying this synergetic effect remain largely unknown. Using a mouse model combining hyperlipidemia (via high-fat diet feeding, HFD) with 5/6 nephrectomy-induced CKD, we made the following significant findings: 1) HFD + CKD upregulated 1179 genes in mouse aortas and induced prominent reactive oxygen species (ROS), far more than either HFD or CKD alone. 2) HFD + CKD upregulated 86 CRISPRi-identified mitochondrial ROS regulators, 36 CRISPRi-identified cellular ROS regulators, and 19 GSEA-collected ROS regulators. These changes were associated with the upregulations of 48 cytokines, 7 highest toxicity uremic toxin receptors—including CD1D, FCGRT, AHR, IL6RA AGER, NR1H3 and NPY5R—in aortas. 3) These uremic toxin receptors emerged as novel promoters of inflammation and trained immunity. Deficiencies in CD1D, AHR, AGER, and the trained immunity promoter SET7 each downregulated up to 5.5 % of the genes upregulated by HFD + CKD. Conversely, activation of NR1H3 using an agonist upregulated up to 12.2 % of these genes. 4) The expression of 46 cytokine genes was strongly associated with NR1H3 upregulation. 5) The NR1H3 agonist also induced the expression of 28 ROS regulators, including YBX2, a novel anti-ROS transcription factor and RNA-binding protein, suggesting a potential negative feedback mechanism. YBX2 deficiency increased the cellular ROS level, while YBX2 overexpression suppressed 27 proinflammatory genes induced by HFD + CKD. Our findings provide novel insights into the role of the NR1H3-YBX2 axis in regulating inflammation accelerated by hyperlipidemia and CKD.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"85 \",\"pages\":\"Article 103724\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221323172500237X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221323172500237X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Uremic toxin receptor NR1H3 contributes to hyperlipidemia- and chronic kidney disease-accelerated vascular inflammation, which is partially suppressed by novel YBX2 anti-ROS pathway
Hyperlipidemia and chronic kidney disease (CKD) are well-established risk factors for cardiovascular disease and act synergistically to promote vascular inflammation and disease progression. However, the mechanisms underlying this synergetic effect remain largely unknown. Using a mouse model combining hyperlipidemia (via high-fat diet feeding, HFD) with 5/6 nephrectomy-induced CKD, we made the following significant findings: 1) HFD + CKD upregulated 1179 genes in mouse aortas and induced prominent reactive oxygen species (ROS), far more than either HFD or CKD alone. 2) HFD + CKD upregulated 86 CRISPRi-identified mitochondrial ROS regulators, 36 CRISPRi-identified cellular ROS regulators, and 19 GSEA-collected ROS regulators. These changes were associated with the upregulations of 48 cytokines, 7 highest toxicity uremic toxin receptors—including CD1D, FCGRT, AHR, IL6RA AGER, NR1H3 and NPY5R—in aortas. 3) These uremic toxin receptors emerged as novel promoters of inflammation and trained immunity. Deficiencies in CD1D, AHR, AGER, and the trained immunity promoter SET7 each downregulated up to 5.5 % of the genes upregulated by HFD + CKD. Conversely, activation of NR1H3 using an agonist upregulated up to 12.2 % of these genes. 4) The expression of 46 cytokine genes was strongly associated with NR1H3 upregulation. 5) The NR1H3 agonist also induced the expression of 28 ROS regulators, including YBX2, a novel anti-ROS transcription factor and RNA-binding protein, suggesting a potential negative feedback mechanism. YBX2 deficiency increased the cellular ROS level, while YBX2 overexpression suppressed 27 proinflammatory genes induced by HFD + CKD. Our findings provide novel insights into the role of the NR1H3-YBX2 axis in regulating inflammation accelerated by hyperlipidemia and CKD.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.