二氧化碳+甲基环戊烷二元体系的高压相行为

IF 2.7 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Sergiu Sima , Catinca Secuianu , Juan Heringer , Dan Vladimir Nichita
{"title":"二氧化碳+甲基环戊烷二元体系的高压相行为","authors":"Sergiu Sima ,&nbsp;Catinca Secuianu ,&nbsp;Juan Heringer ,&nbsp;Dan Vladimir Nichita","doi":"10.1016/j.fluid.2025.114497","DOIUrl":null,"url":null,"abstract":"<div><div>The vapour – liquid critical curve of the carbon dioxide (CO<sub>2</sub>) + methylcyclopentane (MCP) binary system is reported. Isothermal vapour–liquid equilibrium (VLE) data as well as the density of the liquid phase were also measured at five temperatures (323.15–383.15 K) and pressures up to 130 bar using the “<em>AnTVisVarCap</em>” method, as systematised by Dohrn and co-workers. The newly determined isothermal data are compared with the limited literature data available, which are critically reviewed and analysed. It is important to note that, in the three existing studies reporting carbon dioxide solubilities in methylcyclopentane, the reported purities of the components are either unspecified or differ significantly, potentially contributing to discrepancies in the data. Both the new and literature datasets were correlated using the General Equation of State (GEOS), Peng–Robinson (PR), Predictive Peng–Robinson ‘78 (PPR78), and Soave–Redlich–Kwong (SRK) equations of state, employing various modelling strategies. The effect of the critical properties and acentric factors of the pure components on the phase behaviour of the binary system was also examined and found to be negligible. Additionally, comparisons were made with analogous CO<sub>2</sub> binary systems incorporating <em>n</em>-hexane (<em>n</em>H) and cyclohexane (CH) as the second component, representing the corresponding <em>n</em>-alkane and structural isomer of methylcyclopentane, respectively.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"598 ","pages":"Article 114497"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-pressure phase behaviour of carbon dioxide + methylcyclopentane binary system\",\"authors\":\"Sergiu Sima ,&nbsp;Catinca Secuianu ,&nbsp;Juan Heringer ,&nbsp;Dan Vladimir Nichita\",\"doi\":\"10.1016/j.fluid.2025.114497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vapour – liquid critical curve of the carbon dioxide (CO<sub>2</sub>) + methylcyclopentane (MCP) binary system is reported. Isothermal vapour–liquid equilibrium (VLE) data as well as the density of the liquid phase were also measured at five temperatures (323.15–383.15 K) and pressures up to 130 bar using the “<em>AnTVisVarCap</em>” method, as systematised by Dohrn and co-workers. The newly determined isothermal data are compared with the limited literature data available, which are critically reviewed and analysed. It is important to note that, in the three existing studies reporting carbon dioxide solubilities in methylcyclopentane, the reported purities of the components are either unspecified or differ significantly, potentially contributing to discrepancies in the data. Both the new and literature datasets were correlated using the General Equation of State (GEOS), Peng–Robinson (PR), Predictive Peng–Robinson ‘78 (PPR78), and Soave–Redlich–Kwong (SRK) equations of state, employing various modelling strategies. The effect of the critical properties and acentric factors of the pure components on the phase behaviour of the binary system was also examined and found to be negligible. Additionally, comparisons were made with analogous CO<sub>2</sub> binary systems incorporating <em>n</em>-hexane (<em>n</em>H) and cyclohexane (CH) as the second component, representing the corresponding <em>n</em>-alkane and structural isomer of methylcyclopentane, respectively.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"598 \",\"pages\":\"Article 114497\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225001670\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

报道了二氧化碳(CO2) +甲基环戊烷(MCP)二元体系的气液临界曲线。等温汽液平衡(VLE)数据以及液相密度也在5种温度(323.15-383.15 K)和高达130 bar的压力下使用“AnTVisVarCap”方法进行了测量,这是由Dohrn及其同事系统化的。新确定的等温数据与有限的文献数据进行比较,这是严格审查和分析。值得注意的是,在报告二氧化碳在甲基环戊烷中的溶解度的三项现有研究中,报告的组分纯度要么未指定,要么差异很大,这可能导致数据存在差异。新数据集和文献数据集均使用通用状态方程(GEOS)、Peng-Robinson (PR)、Predictive Peng-Robinson’78 (PPR78)和Soave-Redlich-Kwong (SRK)状态方程进行关联,并采用各种建模策略。纯组分的临界性质和偏心因素对二元体系相行为的影响也进行了研究,发现可以忽略不计。此外,还与以正己烷(nH)和环己烷(CH)为第二组分的类似CO2二元体系进行了比较,分别代表相应的正构烷烃和甲基环戊烷的结构异构体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-pressure phase behaviour of carbon dioxide + methylcyclopentane binary system

High-pressure phase behaviour of carbon dioxide + methylcyclopentane binary system
The vapour – liquid critical curve of the carbon dioxide (CO2) + methylcyclopentane (MCP) binary system is reported. Isothermal vapour–liquid equilibrium (VLE) data as well as the density of the liquid phase were also measured at five temperatures (323.15–383.15 K) and pressures up to 130 bar using the “AnTVisVarCap” method, as systematised by Dohrn and co-workers. The newly determined isothermal data are compared with the limited literature data available, which are critically reviewed and analysed. It is important to note that, in the three existing studies reporting carbon dioxide solubilities in methylcyclopentane, the reported purities of the components are either unspecified or differ significantly, potentially contributing to discrepancies in the data. Both the new and literature datasets were correlated using the General Equation of State (GEOS), Peng–Robinson (PR), Predictive Peng–Robinson ‘78 (PPR78), and Soave–Redlich–Kwong (SRK) equations of state, employing various modelling strategies. The effect of the critical properties and acentric factors of the pure components on the phase behaviour of the binary system was also examined and found to be negligible. Additionally, comparisons were made with analogous CO2 binary systems incorporating n-hexane (nH) and cyclohexane (CH) as the second component, representing the corresponding n-alkane and structural isomer of methylcyclopentane, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信