Sangjoon Park , Yong Bae Kim , Jee Suk Chang , Seo Hee Choi , Hyungjin Chung , Ik Jae Lee , Hwa Kyung Byun
{"title":"客观评价乳腺癌美容效果的标签独立框架","authors":"Sangjoon Park , Yong Bae Kim , Jee Suk Chang , Seo Hee Choi , Hyungjin Chung , Ik Jae Lee , Hwa Kyung Byun","doi":"10.1016/j.artmed.2025.103179","DOIUrl":null,"url":null,"abstract":"<div><div>With advancements in the field of breast cancer treatment, the assessment of postsurgical cosmetic outcomes has gained increasing significance owing to its substantial impact on patients’ quality of life. However, evaluating breast cosmesis is challenging because of the inherently subjective nature of expert labeling. In this study, we present a novel automated approach, attention-guided denoising diffusion anomaly detection (AG-DDAD), designed to assess breast cosmesis following surgery. The model addresses the limitations of conventional supervised learning and existing anomaly detection models. Our approach leverages the attention mechanism of distillation with no labels and a self-supervised vision transformer, combined with a diffusion model, to achieve high-quality image reconstruction and precise transformation of discriminative regions. By training the diffusion model on unlabeled data, predominantly with normal cosmesis, we adopted an unsupervised anomaly detection perspective to automatically score the cosmesis. Real-world data experiments demonstrated the effectiveness of our method, providing visually appealing representations and quantifiable scores for cosmesis evaluation. Compared with commonly used rule-based programs, our fully automated approach eliminates the need for manual annotations and offers an objective evaluation. Moreover, our anomaly detection model exhibits state-of-the-art performance, surpassing existing models in terms of accuracy. Beyond the scope of breast cosmesis, our research represents a significant advancement in unsupervised anomaly detection within the medical domain, thereby paving the way for future investigations.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"167 ","pages":"Article 103179"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-independent framework for objective evaluation of cosmetic outcome in breast cancer\",\"authors\":\"Sangjoon Park , Yong Bae Kim , Jee Suk Chang , Seo Hee Choi , Hyungjin Chung , Ik Jae Lee , Hwa Kyung Byun\",\"doi\":\"10.1016/j.artmed.2025.103179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With advancements in the field of breast cancer treatment, the assessment of postsurgical cosmetic outcomes has gained increasing significance owing to its substantial impact on patients’ quality of life. However, evaluating breast cosmesis is challenging because of the inherently subjective nature of expert labeling. In this study, we present a novel automated approach, attention-guided denoising diffusion anomaly detection (AG-DDAD), designed to assess breast cosmesis following surgery. The model addresses the limitations of conventional supervised learning and existing anomaly detection models. Our approach leverages the attention mechanism of distillation with no labels and a self-supervised vision transformer, combined with a diffusion model, to achieve high-quality image reconstruction and precise transformation of discriminative regions. By training the diffusion model on unlabeled data, predominantly with normal cosmesis, we adopted an unsupervised anomaly detection perspective to automatically score the cosmesis. Real-world data experiments demonstrated the effectiveness of our method, providing visually appealing representations and quantifiable scores for cosmesis evaluation. Compared with commonly used rule-based programs, our fully automated approach eliminates the need for manual annotations and offers an objective evaluation. Moreover, our anomaly detection model exhibits state-of-the-art performance, surpassing existing models in terms of accuracy. Beyond the scope of breast cosmesis, our research represents a significant advancement in unsupervised anomaly detection within the medical domain, thereby paving the way for future investigations.</div></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"167 \",\"pages\":\"Article 103179\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0933365725001149\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725001149","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Label-independent framework for objective evaluation of cosmetic outcome in breast cancer
With advancements in the field of breast cancer treatment, the assessment of postsurgical cosmetic outcomes has gained increasing significance owing to its substantial impact on patients’ quality of life. However, evaluating breast cosmesis is challenging because of the inherently subjective nature of expert labeling. In this study, we present a novel automated approach, attention-guided denoising diffusion anomaly detection (AG-DDAD), designed to assess breast cosmesis following surgery. The model addresses the limitations of conventional supervised learning and existing anomaly detection models. Our approach leverages the attention mechanism of distillation with no labels and a self-supervised vision transformer, combined with a diffusion model, to achieve high-quality image reconstruction and precise transformation of discriminative regions. By training the diffusion model on unlabeled data, predominantly with normal cosmesis, we adopted an unsupervised anomaly detection perspective to automatically score the cosmesis. Real-world data experiments demonstrated the effectiveness of our method, providing visually appealing representations and quantifiable scores for cosmesis evaluation. Compared with commonly used rule-based programs, our fully automated approach eliminates the need for manual annotations and offers an objective evaluation. Moreover, our anomaly detection model exhibits state-of-the-art performance, surpassing existing models in terms of accuracy. Beyond the scope of breast cosmesis, our research represents a significant advancement in unsupervised anomaly detection within the medical domain, thereby paving the way for future investigations.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.