揭示非水Li-CO2电池中CO2还原反应途径的溶剂化化学和表面效应

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fan Gao, Mu-Fei Yue, Daniel Wun Fung Cheung, Weimin Yang, Zhi-Feng He, Yu Gu*, Shisheng Zheng*, Xiaobin Zhong, Siyuan Ma, Wei-Ping Chen, Jing-Hua Tian, Jin-Chao Dong* and Jian-Feng Li*, 
{"title":"揭示非水Li-CO2电池中CO2还原反应途径的溶剂化化学和表面效应","authors":"Fan Gao,&nbsp;Mu-Fei Yue,&nbsp;Daniel Wun Fung Cheung,&nbsp;Weimin Yang,&nbsp;Zhi-Feng He,&nbsp;Yu Gu*,&nbsp;Shisheng Zheng*,&nbsp;Xiaobin Zhong,&nbsp;Siyuan Ma,&nbsp;Wei-Ping Chen,&nbsp;Jing-Hua Tian,&nbsp;Jin-Chao Dong* and Jian-Feng Li*,&nbsp;","doi":"10.1021/jacs.5c0415710.1021/jacs.5c04157","DOIUrl":null,"url":null,"abstract":"<p >Achieving highly reversible Li–CO<sub>2</sub> batteries requires efficient and reversible CO<sub>2</sub> redox reactions. However, the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) mechanism during discharge in nonaqueous electrolytes, strongly influenced by the solvent environment and surface structure, remains unclear. Here, we systematically investigate the CO<sub>2</sub>RR on atomically flat Au(<i>hkl</i>) single crystal surfaces, providing direct spectral evidence of vital surface/intermediate species using in situ Raman spectroscopy. Our findings, combined with theoretical calculations, reveal that high-donor-number (DN) electrolytes facilitate a solution-mediated pathway, where Li<sup>+</sup> forms stable solvation structures with solvent molecules that react with *CO<sub>2</sub><sup>–</sup> to produce CO and Li<sub>2</sub>CO<sub>3</sub>. Conversely, low-DN electrolytes promote a surface-mediated pathway due to limited solvation, enhancing direct Li<sup>+</sup>–*CO<sub>2</sub><sup>–</sup> interactions on the electrode surface. Among the various Au(<i>hkl</i>) surfaces, Au(110) shows superior catalytic activity, greatly enhancing *CO<sub>2</sub><sup>–</sup> activation. This research offers crucial insights into the interplay between solvent chemistry and surface structure in the CO<sub>2</sub>RR, guiding future Li–CO<sub>2</sub> batteries optimization.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 23","pages":"19859–19867 19859–19867"},"PeriodicalIF":15.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Solvation Chemistry and Surface Effects on CO2 Reduction Reaction Pathways in Nonaqueous Li–CO2 Batteries\",\"authors\":\"Fan Gao,&nbsp;Mu-Fei Yue,&nbsp;Daniel Wun Fung Cheung,&nbsp;Weimin Yang,&nbsp;Zhi-Feng He,&nbsp;Yu Gu*,&nbsp;Shisheng Zheng*,&nbsp;Xiaobin Zhong,&nbsp;Siyuan Ma,&nbsp;Wei-Ping Chen,&nbsp;Jing-Hua Tian,&nbsp;Jin-Chao Dong* and Jian-Feng Li*,&nbsp;\",\"doi\":\"10.1021/jacs.5c0415710.1021/jacs.5c04157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving highly reversible Li–CO<sub>2</sub> batteries requires efficient and reversible CO<sub>2</sub> redox reactions. However, the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) mechanism during discharge in nonaqueous electrolytes, strongly influenced by the solvent environment and surface structure, remains unclear. Here, we systematically investigate the CO<sub>2</sub>RR on atomically flat Au(<i>hkl</i>) single crystal surfaces, providing direct spectral evidence of vital surface/intermediate species using in situ Raman spectroscopy. Our findings, combined with theoretical calculations, reveal that high-donor-number (DN) electrolytes facilitate a solution-mediated pathway, where Li<sup>+</sup> forms stable solvation structures with solvent molecules that react with *CO<sub>2</sub><sup>–</sup> to produce CO and Li<sub>2</sub>CO<sub>3</sub>. Conversely, low-DN electrolytes promote a surface-mediated pathway due to limited solvation, enhancing direct Li<sup>+</sup>–*CO<sub>2</sub><sup>–</sup> interactions on the electrode surface. Among the various Au(<i>hkl</i>) surfaces, Au(110) shows superior catalytic activity, greatly enhancing *CO<sub>2</sub><sup>–</sup> activation. This research offers crucial insights into the interplay between solvent chemistry and surface structure in the CO<sub>2</sub>RR, guiding future Li–CO<sub>2</sub> batteries optimization.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 23\",\"pages\":\"19859–19867 19859–19867\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c04157\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c04157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现高可逆的锂-二氧化碳电池需要高效和可逆的二氧化碳氧化还原反应。然而,受溶剂环境和表面结构的强烈影响,非水电解质放电过程中CO2还原反应(CO2RR)的机理尚不清楚。在这里,我们系统地研究了原子平面Au(hkl)单晶表面上的CO2RR,使用原位拉曼光谱提供了重要表面/中间物质的直接光谱证据。结合理论计算,我们的研究结果表明,高给体数(DN)电解质促进了溶液介导的途径,其中Li+与溶剂分子形成稳定的溶剂化结构,并与*CO2 -反应产生CO和Li2CO3。相反,低dn电解质由于溶剂化有限,促进了表面介导的途径,增强了电极表面Li+ - *CO2 -的直接相互作用。在各种Au(hkl)表面中,Au(110)表现出优异的催化活性,大大增强了*CO2 -的活化。这项研究对CO2RR中溶剂化学和表面结构之间的相互作用提供了重要的见解,指导了未来Li-CO2电池的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Solvation Chemistry and Surface Effects on CO2 Reduction Reaction Pathways in Nonaqueous Li–CO2 Batteries

Unveiling the Solvation Chemistry and Surface Effects on CO2 Reduction Reaction Pathways in Nonaqueous Li–CO2 Batteries

Achieving highly reversible Li–CO2 batteries requires efficient and reversible CO2 redox reactions. However, the CO2 reduction reaction (CO2RR) mechanism during discharge in nonaqueous electrolytes, strongly influenced by the solvent environment and surface structure, remains unclear. Here, we systematically investigate the CO2RR on atomically flat Au(hkl) single crystal surfaces, providing direct spectral evidence of vital surface/intermediate species using in situ Raman spectroscopy. Our findings, combined with theoretical calculations, reveal that high-donor-number (DN) electrolytes facilitate a solution-mediated pathway, where Li+ forms stable solvation structures with solvent molecules that react with *CO2 to produce CO and Li2CO3. Conversely, low-DN electrolytes promote a surface-mediated pathway due to limited solvation, enhancing direct Li+–*CO2 interactions on the electrode surface. Among the various Au(hkl) surfaces, Au(110) shows superior catalytic activity, greatly enhancing *CO2 activation. This research offers crucial insights into the interplay between solvent chemistry and surface structure in the CO2RR, guiding future Li–CO2 batteries optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信