废水处理中过氧乙酸驱动的高级氧化工艺:揭开有机自由基和非自由基的神秘面纱

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Guanglei Yao, Xuefei Zhou, Haiping Gao, Tongcai Liu, Yalei Zhang, Jiabin Chen
{"title":"废水处理中过氧乙酸驱动的高级氧化工艺:揭开有机自由基和非自由基的神秘面纱","authors":"Guanglei Yao, Xuefei Zhou, Haiping Gao, Tongcai Liu, Yalei Zhang, Jiabin Chen","doi":"10.1080/10643389.2025.2495637","DOIUrl":null,"url":null,"abstract":"Peracetic acid (PAA) based advanced oxidation processes (AOPs) have received increasing attention in wastewater treatment. However, it is challenging to identify the radical and/or non-radical species and elucidate the intrinsic interaction mechanisms involved in PAA-based AOPs. This work presents a systematic review of the selective generation mechanisms of radicals (hydroxyl and organic radicals), with a focus on organic radicals, and non-radical species (reactive complexes (RC), high-valent metals (HVM), singlet oxygen (<sup>1</sup>O<sub>2</sub>), and electron transfer process (ETP)). Furthermore, we examine various strategies for the precise identification and characterization of radical and/or non-radical species (e.g., quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing), and emphasize existing controversies. Subsequently, we provide an in-depth discussion of the reaction mechanisms between the reactive species and the contaminants/water matrices, as well as the potential for generating halogenated byproducts. Finally, we highlight the challenges and opportunities of the PAA-based AOPs in wastewater treatment, aiming to inspire future research endeavors that promote the practical application of PAA-based AOPs in wastewater treatment.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"4 1","pages":"1124-1147"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peracetic acid-driven advanced oxidation processes for wastewater treatment: Demystifying organic radicals and non-radical species\",\"authors\":\"Guanglei Yao, Xuefei Zhou, Haiping Gao, Tongcai Liu, Yalei Zhang, Jiabin Chen\",\"doi\":\"10.1080/10643389.2025.2495637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peracetic acid (PAA) based advanced oxidation processes (AOPs) have received increasing attention in wastewater treatment. However, it is challenging to identify the radical and/or non-radical species and elucidate the intrinsic interaction mechanisms involved in PAA-based AOPs. This work presents a systematic review of the selective generation mechanisms of radicals (hydroxyl and organic radicals), with a focus on organic radicals, and non-radical species (reactive complexes (RC), high-valent metals (HVM), singlet oxygen (<sup>1</sup>O<sub>2</sub>), and electron transfer process (ETP)). Furthermore, we examine various strategies for the precise identification and characterization of radical and/or non-radical species (e.g., quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing), and emphasize existing controversies. Subsequently, we provide an in-depth discussion of the reaction mechanisms between the reactive species and the contaminants/water matrices, as well as the potential for generating halogenated byproducts. Finally, we highlight the challenges and opportunities of the PAA-based AOPs in wastewater treatment, aiming to inspire future research endeavors that promote the practical application of PAA-based AOPs in wastewater treatment.\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"4 1\",\"pages\":\"1124-1147\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2025.2495637\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2495637","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过氧乙酸(PAA)基深度氧化工艺(AOPs)在废水处理中受到越来越多的关注。然而,确定自由基和/或非自由基种类以及阐明paas基AOPs的内在相互作用机制具有挑战性。本文对自由基(羟基自由基和有机自由基)的选择性生成机制进行了系统的综述,重点介绍了有机自由基和非自由基(反应性配合物(RC)、高价金属(HVM)、单线态氧(1O2)和电子转移过程(ETP))。此外,我们研究了各种用于精确鉴定和表征自由基和/或非自由基物种的策略(例如,淬火,化学探针,光谱,质谱和电化学测试),并强调了现有的争议。随后,我们深入讨论了反应物质与污染物/水基质之间的反应机制,以及产生卤化副产物的可能性。最后,我们强调了paas基AOPs在废水处理中的挑战和机遇,旨在启发未来的研究工作,促进paas基AOPs在废水处理中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peracetic acid-driven advanced oxidation processes for wastewater treatment: Demystifying organic radicals and non-radical species
Peracetic acid (PAA) based advanced oxidation processes (AOPs) have received increasing attention in wastewater treatment. However, it is challenging to identify the radical and/or non-radical species and elucidate the intrinsic interaction mechanisms involved in PAA-based AOPs. This work presents a systematic review of the selective generation mechanisms of radicals (hydroxyl and organic radicals), with a focus on organic radicals, and non-radical species (reactive complexes (RC), high-valent metals (HVM), singlet oxygen (1O2), and electron transfer process (ETP)). Furthermore, we examine various strategies for the precise identification and characterization of radical and/or non-radical species (e.g., quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing), and emphasize existing controversies. Subsequently, we provide an in-depth discussion of the reaction mechanisms between the reactive species and the contaminants/water matrices, as well as the potential for generating halogenated byproducts. Finally, we highlight the challenges and opportunities of the PAA-based AOPs in wastewater treatment, aiming to inspire future research endeavors that promote the practical application of PAA-based AOPs in wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信