{"title":"基于自编码器的多尺度空间域识别图卷积网络","authors":"Tianjiao Zhang, Hongfei Zhang, Zhongqian Zhao, Saihong Shao, Yucai Jiang, Xiang Zhang, Guohua Wang","doi":"10.1186/s13059-025-03637-z","DOIUrl":null,"url":null,"abstract":"Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"17 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation\",\"authors\":\"Tianjiao Zhang, Hongfei Zhang, Zhongqian Zhao, Saihong Shao, Yucai Jiang, Xiang Zhang, Guohua Wang\",\"doi\":\"10.1186/s13059-025-03637-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03637-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03637-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation
Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.