供水网络中氯浓度状态的物理信息机器学习的基准。

SN computer science Pub Date : 2025-01-01 Epub Date: 2025-06-04 DOI:10.1007/s42979-025-04008-y
Luca Hermes, André Artelt, Stelios G Vrachimis, Marios M Polycarpou, Barbara Hammer
{"title":"供水网络中氯浓度状态的物理信息机器学习的基准。","authors":"Luca Hermes, André Artelt, Stelios G Vrachimis, Marios M Polycarpou, Barbara Hammer","doi":"10.1007/s42979-025-04008-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring high-quality drinking water is a critical responsibility of water utilities, with chlorine being the main disinfectant typically used. Accurate estimation of chlorine concentrations in the dynamic environment of water distribution networks (WDNs) is essential to ensure safe water supply. This work introduces a comprehensive and carefully created benchmark for training and evaluation of chlorine concentration estimation methodologies in WDNs. The benchmark includes a diverse dataset of 18,000 scenarios of the widely studied 'Hanoi', 'Net1', and the more recent and complex 'CY-DBP' water networks, featuring various chlorine injection patterns to capture diverse physical dynamics. To provide baseline evaluations, we propose and evaluate two neural surrogate models for chlorine state estimation: a physics-informed Graph Neural Network (GNN) and a physics-guided Recurrent Neural Network (RNN).</p>","PeriodicalId":94207,"journal":{"name":"SN computer science","volume":"6 5","pages":"522"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137424/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Benchmark for Physics-informed Machine Learning of Chlorine Concentration States in Water Distribution Networks.\",\"authors\":\"Luca Hermes, André Artelt, Stelios G Vrachimis, Marios M Polycarpou, Barbara Hammer\",\"doi\":\"10.1007/s42979-025-04008-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensuring high-quality drinking water is a critical responsibility of water utilities, with chlorine being the main disinfectant typically used. Accurate estimation of chlorine concentrations in the dynamic environment of water distribution networks (WDNs) is essential to ensure safe water supply. This work introduces a comprehensive and carefully created benchmark for training and evaluation of chlorine concentration estimation methodologies in WDNs. The benchmark includes a diverse dataset of 18,000 scenarios of the widely studied 'Hanoi', 'Net1', and the more recent and complex 'CY-DBP' water networks, featuring various chlorine injection patterns to capture diverse physical dynamics. To provide baseline evaluations, we propose and evaluate two neural surrogate models for chlorine state estimation: a physics-informed Graph Neural Network (GNN) and a physics-guided Recurrent Neural Network (RNN).</p>\",\"PeriodicalId\":94207,\"journal\":{\"name\":\"SN computer science\",\"volume\":\"6 5\",\"pages\":\"522\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42979-025-04008-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42979-025-04008-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保高质量的饮用水是水务公司的一项重要责任,氯是通常使用的主要消毒剂。准确估计配水管网动态环境中的氯浓度对保证供水安全至关重要。这项工作介绍了一个全面和精心创建的基准,用于培训和评估wdn中的氯浓度估计方法。该基准包括广泛研究的“Hanoi”、“Net1”和更近期、更复杂的“CY-DBP”水网络的18000个场景的多样化数据集,具有各种氯注入模式,以捕捉不同的物理动态。为了提供基线评估,我们提出并评估了氯状态估计的两种神经代理模型:物理信息图神经网络(GNN)和物理引导递归神经网络(RNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Benchmark for Physics-informed Machine Learning of Chlorine Concentration States in Water Distribution Networks.

Ensuring high-quality drinking water is a critical responsibility of water utilities, with chlorine being the main disinfectant typically used. Accurate estimation of chlorine concentrations in the dynamic environment of water distribution networks (WDNs) is essential to ensure safe water supply. This work introduces a comprehensive and carefully created benchmark for training and evaluation of chlorine concentration estimation methodologies in WDNs. The benchmark includes a diverse dataset of 18,000 scenarios of the widely studied 'Hanoi', 'Net1', and the more recent and complex 'CY-DBP' water networks, featuring various chlorine injection patterns to capture diverse physical dynamics. To provide baseline evaluations, we propose and evaluate two neural surrogate models for chlorine state estimation: a physics-informed Graph Neural Network (GNN) and a physics-guided Recurrent Neural Network (RNN).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信