Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos
{"title":"使用规范建模和生成对抗网络(GANs)分析结构和功能mri衍生测量中的疾病异质性。","authors":"Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos","doi":"10.1117/12.3040541","DOIUrl":null,"url":null,"abstract":"<p><p>We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13407 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143270/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parsing disease heterogeneity in structural and functional MRI-derived measures using normative modeling and Generative Adversarial Networks (GANs).\",\"authors\":\"Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos\",\"doi\":\"10.1117/12.3040541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"13407 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3040541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3040541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Parsing disease heterogeneity in structural and functional MRI-derived measures using normative modeling and Generative Adversarial Networks (GANs).
We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.