战胜高温:热带低地蜥蜴表达热休克蛋白网络,以应对急性热应激。

IF 2.2 3区 生物学 Q1 ZOOLOGY
Kelly Lin Wuthrich, Albert K Chung, Adam Rosso, W Owen McMillan, Michael L Logan, Christian L Cox
{"title":"战胜高温:热带低地蜥蜴表达热休克蛋白网络,以应对急性热应激。","authors":"Kelly Lin Wuthrich, Albert K Chung, Adam Rosso, W Owen McMillan, Michael L Logan, Christian L Cox","doi":"10.1093/icb/icaf057","DOIUrl":null,"url":null,"abstract":"<p><p>Ectothermic species in lowland tropical forests have evolved in historically stable climates, leading to the prediction that transcriptomic and phenotypic plasticity do not play major roles in their responses to changes in environmental temperature. However, these species are often thermoconformers and are therefore exposed to short-term temporal fluctuations in temperature. Hence, transcriptomic plasticity in tropical forest ectotherms might replace behavioral thermoregulation as a mechanism to buffer against thermal stress. In particular, upregulatation of heat shock proteins can occur during thermal stress is a range of organisms. However, while many studies have explored gene expression plasticity in response to heat stress in model organisms, little is known about transcriptomic plasticity in the tropical, non-model species that will be the most impacted by climate change. We studied the effects of moderate and severe acute heat stress events in the Panamanian slender anole (Anolis apletophallus) to gain insight into a mechanism that might allow tropical ectotherms to withstand the heat waves that are likely to rise in frequency over the coming decades under anthropogenic climate change. We found that multiple genes were upregulated across several heat shock protein networks in three tissues, and the magnitude of the expression response was similar irrespective of whether heat stress was moderate or severe. Overall, our results indicate a potentially crucial role for heat shock protein networks in the ability of tropical ectotherms to resist the negative effects of rising temperatures.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beating the heat: a lowland tropical lizard expresses heat shock protein networks in response to acute thermal stress.\",\"authors\":\"Kelly Lin Wuthrich, Albert K Chung, Adam Rosso, W Owen McMillan, Michael L Logan, Christian L Cox\",\"doi\":\"10.1093/icb/icaf057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ectothermic species in lowland tropical forests have evolved in historically stable climates, leading to the prediction that transcriptomic and phenotypic plasticity do not play major roles in their responses to changes in environmental temperature. However, these species are often thermoconformers and are therefore exposed to short-term temporal fluctuations in temperature. Hence, transcriptomic plasticity in tropical forest ectotherms might replace behavioral thermoregulation as a mechanism to buffer against thermal stress. In particular, upregulatation of heat shock proteins can occur during thermal stress is a range of organisms. However, while many studies have explored gene expression plasticity in response to heat stress in model organisms, little is known about transcriptomic plasticity in the tropical, non-model species that will be the most impacted by climate change. We studied the effects of moderate and severe acute heat stress events in the Panamanian slender anole (Anolis apletophallus) to gain insight into a mechanism that might allow tropical ectotherms to withstand the heat waves that are likely to rise in frequency over the coming decades under anthropogenic climate change. We found that multiple genes were upregulated across several heat shock protein networks in three tissues, and the magnitude of the expression response was similar irrespective of whether heat stress was moderate or severe. Overall, our results indicate a potentially crucial role for heat shock protein networks in the ability of tropical ectotherms to resist the negative effects of rising temperatures.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icaf057\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

热带低地森林中的变温物种在历史上稳定的气候中进化,导致预测转录组和表型可塑性在它们对环境温度变化的响应中不起主要作用。然而,这些物种往往是热构象,因此暴露在温度的短期波动中。因此,热带森林变温动物的转录组可塑性可能取代行为体温调节作为缓冲热应激的机制。特别是,热休克蛋白的上调可以发生在热应激是一系列的生物体。然而,尽管许多研究已经探索了模式生物应对热应激的基因表达可塑性,但对受气候变化影响最大的热带非模式物种的转录组可塑性知之甚少。我们研究了中度和重度急性热应激事件对巴拿马细长变蜥(Anolis apletophallus)的影响,以深入了解一种机制,这种机制可能使热带变温动物能够抵御在未来几十年因人为气候变化而频率可能上升的热浪。我们发现,在三种组织中,多个基因在多个热休克蛋白网络中上调,并且无论热应激是中度还是重度,表达反应的幅度都是相似的。总的来说,我们的研究结果表明,热休克蛋白网络在热带变温动物抵抗温度上升的负面影响的能力中具有潜在的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beating the heat: a lowland tropical lizard expresses heat shock protein networks in response to acute thermal stress.

Ectothermic species in lowland tropical forests have evolved in historically stable climates, leading to the prediction that transcriptomic and phenotypic plasticity do not play major roles in their responses to changes in environmental temperature. However, these species are often thermoconformers and are therefore exposed to short-term temporal fluctuations in temperature. Hence, transcriptomic plasticity in tropical forest ectotherms might replace behavioral thermoregulation as a mechanism to buffer against thermal stress. In particular, upregulatation of heat shock proteins can occur during thermal stress is a range of organisms. However, while many studies have explored gene expression plasticity in response to heat stress in model organisms, little is known about transcriptomic plasticity in the tropical, non-model species that will be the most impacted by climate change. We studied the effects of moderate and severe acute heat stress events in the Panamanian slender anole (Anolis apletophallus) to gain insight into a mechanism that might allow tropical ectotherms to withstand the heat waves that are likely to rise in frequency over the coming decades under anthropogenic climate change. We found that multiple genes were upregulated across several heat shock protein networks in three tissues, and the magnitude of the expression response was similar irrespective of whether heat stress was moderate or severe. Overall, our results indicate a potentially crucial role for heat shock protein networks in the ability of tropical ectotherms to resist the negative effects of rising temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信