Dominic I Standage, Daniel J Gale, Joseph Y Nashed, J Randall Flanagan, Jason P Gallivan
{"title":"休息时全脑模块化动态预测感觉运动学习表现。","authors":"Dominic I Standage, Daniel J Gale, Joseph Y Nashed, J Randall Flanagan, Jason P Gallivan","doi":"10.1162/netn_a_00420","DOIUrl":null,"url":null,"abstract":"<p><p>Neural measures that predict cognitive performance are informative about the mechanisms underlying cognitive phenomena, with diagnostic potential for neuropathologies with cognitive symptoms. Among such markers, the modularity (subnetwork composition) of whole-brain functional networks is especially promising due to its longstanding theoretical foundations and recent success in predicting clinical outcomes. We used functional magnetic resonance imaging to identify whole-brain modules at rest, calculating metrics of their spatiotemporal dynamics before and after a sensorimotor learning task on which fast learning is widely believed to be supported by a cognitive strategy. We found that participants' learning performance was predicted by the degree of coordination of modular reconfiguration and the strength of recruitment and integration of networks derived during the task itself. Our findings identify these whole-brain metrics as promising network-based markers of cognition, with relevance to basic neuroscience and the potential for clinical application.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"631-660"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole-brain modular dynamics at rest predict sensorimotor learning performance.\",\"authors\":\"Dominic I Standage, Daniel J Gale, Joseph Y Nashed, J Randall Flanagan, Jason P Gallivan\",\"doi\":\"10.1162/netn_a_00420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural measures that predict cognitive performance are informative about the mechanisms underlying cognitive phenomena, with diagnostic potential for neuropathologies with cognitive symptoms. Among such markers, the modularity (subnetwork composition) of whole-brain functional networks is especially promising due to its longstanding theoretical foundations and recent success in predicting clinical outcomes. We used functional magnetic resonance imaging to identify whole-brain modules at rest, calculating metrics of their spatiotemporal dynamics before and after a sensorimotor learning task on which fast learning is widely believed to be supported by a cognitive strategy. We found that participants' learning performance was predicted by the degree of coordination of modular reconfiguration and the strength of recruitment and integration of networks derived during the task itself. Our findings identify these whole-brain metrics as promising network-based markers of cognition, with relevance to basic neuroscience and the potential for clinical application.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"631-660\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00420\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00420","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Whole-brain modular dynamics at rest predict sensorimotor learning performance.
Neural measures that predict cognitive performance are informative about the mechanisms underlying cognitive phenomena, with diagnostic potential for neuropathologies with cognitive symptoms. Among such markers, the modularity (subnetwork composition) of whole-brain functional networks is especially promising due to its longstanding theoretical foundations and recent success in predicting clinical outcomes. We used functional magnetic resonance imaging to identify whole-brain modules at rest, calculating metrics of their spatiotemporal dynamics before and after a sensorimotor learning task on which fast learning is widely believed to be supported by a cognitive strategy. We found that participants' learning performance was predicted by the degree of coordination of modular reconfiguration and the strength of recruitment and integration of networks derived during the task itself. Our findings identify these whole-brain metrics as promising network-based markers of cognition, with relevance to basic neuroscience and the potential for clinical application.