{"title":"量化生物物理因素对通过残余功能网络形成大脑通讯的影响。","authors":"Johan Nakuci, Javier Garcia, Kanika Bansal","doi":"10.1162/netn_a_00444","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating <i>remnant functional networks</i> after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"522-548"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.\",\"authors\":\"Johan Nakuci, Javier Garcia, Kanika Bansal\",\"doi\":\"10.1162/netn_a_00444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating <i>remnant functional networks</i> after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"522-548\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00444\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.
Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating remnant functional networks after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.