量化生物物理因素对通过残余功能网络形成大脑通讯的影响。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00444
Johan Nakuci, Javier Garcia, Kanika Bansal
{"title":"量化生物物理因素对通过残余功能网络形成大脑通讯的影响。","authors":"Johan Nakuci, Javier Garcia, Kanika Bansal","doi":"10.1162/netn_a_00444","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating <i>remnant functional networks</i> after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"522-548"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.\",\"authors\":\"Johan Nakuci, Javier Garcia, Kanika Bansal\",\"doi\":\"10.1162/netn_a_00444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating <i>remnant functional networks</i> after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"522-548\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00444\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

功能连接(FC)反映了认知所必需的全脑通信,但潜在的生物物理因素在形成FC中的作用尚不清楚。我们量化了物理因素-结构连通性(SC)和欧几里得距离(DC),它们捕获了解剖线路和区域距离,以及分子因素-基因表达相似性(GC)和神经受体一致性(RC),代表神经生物学相似性-对静息状态FC的影响。我们评估这些因素如何影响图论和梯度特征,捕捉成对和高阶相互作用。通过选择性地去除与特定因素相关的连接后生成剩余功能网络,我们发现分子因素(尤其是RC)主导着图论特征,而梯度特征是由分子和物理因素(尤其是GC和DC)混合形成的。SC的作用出奇的小。我们还将精神分裂症、双相情感障碍和注意缺陷多动障碍(ADHD)的FC改变与生物物理因素联系起来,并将物理因素与这些群体区分开来。这些见解是理解跨各种应用程序(包括任务性能、开发和临床条件)的FC的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.

Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating remnant functional networks after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信