语言系统的神经生物学信息图论分析。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00443
Yosuke Morishima, Martijn van den Heuvel, Werner Strik, Thomas Dierks
{"title":"语言系统的神经生物学信息图论分析。","authors":"Yosuke Morishima, Martijn van den Heuvel, Werner Strik, Thomas Dierks","doi":"10.1162/netn_a_00443","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in neuroimaging data analysis facilitate the characterization of adaptive changes in brain network integration. This study introduces a distinctive approach that merges knowledge-informed and data-driven methodologies, offering a nuanced way to more effectively understand these changes. Utilizing graph network analysis, along with existing neurobiological knowledge of domain-specific brain network systems, we uncover a deeper understanding of brain network interaction and integration. As a proof of concept, we applied our approach to the language domain, a well-known large-scale network system as a representative model system, using functional imaging datasets with specific language tasks for validation of our proposed approach. Our results revealed a double dissociation between motor and sensory language modules during word generation and comprehension tasks. Furthermore, by introducing a hierarchical nature of brain networks and introducing local and global metrics, we demonstrated that hierarchical levels of networks exhibit distinct ways of integration of language brain networks. This innovative approach facilitates a differentiated and thorough interpretation of brain network function in local and global manners, marking a significant advancement in our ability to investigate adaptive changes in brain network integration in health and disease.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"504-521"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140569/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurobiologically informed graph theory analysis of the language system.\",\"authors\":\"Yosuke Morishima, Martijn van den Heuvel, Werner Strik, Thomas Dierks\",\"doi\":\"10.1162/netn_a_00443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in neuroimaging data analysis facilitate the characterization of adaptive changes in brain network integration. This study introduces a distinctive approach that merges knowledge-informed and data-driven methodologies, offering a nuanced way to more effectively understand these changes. Utilizing graph network analysis, along with existing neurobiological knowledge of domain-specific brain network systems, we uncover a deeper understanding of brain network interaction and integration. As a proof of concept, we applied our approach to the language domain, a well-known large-scale network system as a representative model system, using functional imaging datasets with specific language tasks for validation of our proposed approach. Our results revealed a double dissociation between motor and sensory language modules during word generation and comprehension tasks. Furthermore, by introducing a hierarchical nature of brain networks and introducing local and global metrics, we demonstrated that hierarchical levels of networks exhibit distinct ways of integration of language brain networks. This innovative approach facilitates a differentiated and thorough interpretation of brain network function in local and global manners, marking a significant advancement in our ability to investigate adaptive changes in brain network integration in health and disease.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"504-521\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140569/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00443\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00443","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经成像数据分析的最新进展有助于表征大脑网络整合的适应性变化。本研究引入了一种独特的方法,它融合了知识和数据驱动的方法,为更有效地理解这些变化提供了一种细致入微的方法。利用图网络分析,以及现有的特定领域脑网络系统的神经生物学知识,我们揭示了对脑网络交互和集成的更深层次的理解。作为概念验证,我们将我们的方法应用于语言领域,一个众所周知的大型网络系统作为代表性模型系统,使用具有特定语言任务的功能成像数据集来验证我们提出的方法。我们的研究结果显示,在单词生成和理解任务中,运动语言模块和感觉语言模块之间存在双重分离。此外,通过引入大脑网络的层次性质以及引入局部和全局指标,我们证明了网络的层次层次表现出不同的语言大脑网络整合方式。这种创新的方法有助于在局部和全局方式下对大脑网络功能进行差异化和彻底的解释,标志着我们在研究健康和疾病中大脑网络整合的适应性变化的能力方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurobiologically informed graph theory analysis of the language system.

Recent advancements in neuroimaging data analysis facilitate the characterization of adaptive changes in brain network integration. This study introduces a distinctive approach that merges knowledge-informed and data-driven methodologies, offering a nuanced way to more effectively understand these changes. Utilizing graph network analysis, along with existing neurobiological knowledge of domain-specific brain network systems, we uncover a deeper understanding of brain network interaction and integration. As a proof of concept, we applied our approach to the language domain, a well-known large-scale network system as a representative model system, using functional imaging datasets with specific language tasks for validation of our proposed approach. Our results revealed a double dissociation between motor and sensory language modules during word generation and comprehension tasks. Furthermore, by introducing a hierarchical nature of brain networks and introducing local and global metrics, we demonstrated that hierarchical levels of networks exhibit distinct ways of integration of language brain networks. This innovative approach facilitates a differentiated and thorough interpretation of brain network function in local and global manners, marking a significant advancement in our ability to investigate adaptive changes in brain network integration in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信