度量结构人类连接体:特征模态的局部化和多重分形。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00439
Anna Bobyleva, Alexander Gorsky, Sergei Nechaev, Olga Valba, Nikita Pospelov
{"title":"度量结构人类连接体:特征模态的局部化和多重分形。","authors":"Anna Bobyleva, Alexander Gorsky, Sergei Nechaev, Olga Valba, Nikita Pospelov","doi":"10.1162/netn_a_00439","DOIUrl":null,"url":null,"abstract":"<p><p>We explore the fundamental principles underlying the architecture of the human brain's structural connectome through the lens of spectral analysis of Laplacian and adjacency matrices. Building on the idea that the brain balances efficient information processing with minimizing wiring costs, our goal is to understand how the metric properties of the connectome relate to the presence of an inherent scale. We demonstrate that a simple generative model combining nonlinear preferential attachment with an exponential penalty for spatial distance between nodes can effectively reproduce several key features of the human connectome. These include spectral density, edge length distribution, eigenmode localization, local clustering, and topological properties. Additionally, we examine the finer spectral characteristics of human structural connectomes by evaluating the inverse participation ratios (IPR <sub><i>q</i></sub> ) across various parts of the spectrum. Our analysis shows that the level statistics in the soft cluster region of the Laplacian spectrum (where eigenvalues are small) deviate from a purely Poisson distribution due to interactions between clusters. Furthermore, we identify localized modes with large IPR values in the continuous spectrum. Multiple fractal eigenmodes are found across different parts of the spectrum, and we evaluate their fractal dimensions. We also find a power-law behavior in the return probability-a hallmark of critical behavior-and conclude by discussing how our findings are related to previous conjectures that the brain operates in an extended critical phase that supports multifractality.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"682-711"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metric structural human connectomes: Localization and multifractality of eigenmodes.\",\"authors\":\"Anna Bobyleva, Alexander Gorsky, Sergei Nechaev, Olga Valba, Nikita Pospelov\",\"doi\":\"10.1162/netn_a_00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explore the fundamental principles underlying the architecture of the human brain's structural connectome through the lens of spectral analysis of Laplacian and adjacency matrices. Building on the idea that the brain balances efficient information processing with minimizing wiring costs, our goal is to understand how the metric properties of the connectome relate to the presence of an inherent scale. We demonstrate that a simple generative model combining nonlinear preferential attachment with an exponential penalty for spatial distance between nodes can effectively reproduce several key features of the human connectome. These include spectral density, edge length distribution, eigenmode localization, local clustering, and topological properties. Additionally, we examine the finer spectral characteristics of human structural connectomes by evaluating the inverse participation ratios (IPR <sub><i>q</i></sub> ) across various parts of the spectrum. Our analysis shows that the level statistics in the soft cluster region of the Laplacian spectrum (where eigenvalues are small) deviate from a purely Poisson distribution due to interactions between clusters. Furthermore, we identify localized modes with large IPR values in the continuous spectrum. Multiple fractal eigenmodes are found across different parts of the spectrum, and we evaluate their fractal dimensions. We also find a power-law behavior in the return probability-a hallmark of critical behavior-and conclude by discussing how our findings are related to previous conjectures that the brain operates in an extended critical phase that supports multifractality.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"682-711\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00439\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们通过拉普拉斯矩阵和邻接矩阵的光谱分析来探索人脑结构连接体结构的基本原理。基于大脑在有效的信息处理和最小化连接成本之间取得平衡的观点,我们的目标是了解连接体的度量属性是如何与固有尺度的存在相关联的。我们证明了一个简单的生成模型结合了非线性优先依恋和节点之间空间距离的指数惩罚,可以有效地再现人类连接组的几个关键特征。这些包括谱密度、边长分布、特征模定位、局部聚类和拓扑性质。此外,我们通过评估频谱各部分的反向参与比率(IPR q)来检查人类结构连接体的更精细的频谱特征。我们的分析表明,由于聚类之间的相互作用,拉普拉斯谱的软聚类区域(特征值较小)中的水平统计量偏离了纯粹的泊松分布。此外,我们在连续光谱中识别出具有大IPR值的局域模式。在光谱的不同部分发现了多个分形特征模态,并评估了它们的分形维数。我们还在返回概率中发现了幂律行为——临界行为的标志——并通过讨论我们的发现如何与先前的猜测有关,即大脑在支持多重分形的扩展临界阶段中运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric structural human connectomes: Localization and multifractality of eigenmodes.

We explore the fundamental principles underlying the architecture of the human brain's structural connectome through the lens of spectral analysis of Laplacian and adjacency matrices. Building on the idea that the brain balances efficient information processing with minimizing wiring costs, our goal is to understand how the metric properties of the connectome relate to the presence of an inherent scale. We demonstrate that a simple generative model combining nonlinear preferential attachment with an exponential penalty for spatial distance between nodes can effectively reproduce several key features of the human connectome. These include spectral density, edge length distribution, eigenmode localization, local clustering, and topological properties. Additionally, we examine the finer spectral characteristics of human structural connectomes by evaluating the inverse participation ratios (IPR q ) across various parts of the spectrum. Our analysis shows that the level statistics in the soft cluster region of the Laplacian spectrum (where eigenvalues are small) deviate from a purely Poisson distribution due to interactions between clusters. Furthermore, we identify localized modes with large IPR values in the continuous spectrum. Multiple fractal eigenmodes are found across different parts of the spectrum, and we evaluate their fractal dimensions. We also find a power-law behavior in the return probability-a hallmark of critical behavior-and conclude by discussing how our findings are related to previous conjectures that the brain operates in an extended critical phase that supports multifractality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信