William J Tyler, Anusha Adavikottu, Christian Lopez Blanco, Archana Mysore, Christopher Blais, Marco Santello, Avinash Unnikrishnan
{"title":"用于增强机器人和半自主系统的人类操作的神经技术。","authors":"William J Tyler, Anusha Adavikottu, Christian Lopez Blanco, Archana Mysore, Christopher Blais, Marco Santello, Avinash Unnikrishnan","doi":"10.3389/frobt.2025.1491494","DOIUrl":null,"url":null,"abstract":"<p><p>Human operators of remote and semi-autonomous systems must have a high level of executive function to safely and efficiently conduct operations. These operators face unique cognitive challenges when monitoring and controlling robotic machines, such as vehicles, drones, and construction equipment. The development of safe and experienced human operators of remote machines requires structured training and credentialing programs. This review critically evaluates the potential for incorporating neurotechnology into remote systems operator training and work to enhance human-machine interactions, performance, and safety. Recent evidence demonstrating that different noninvasive neuromodulation and neurofeedback methods can improve critical executive functions such as attention, learning, memory, and cognitive control is reviewed. We further describe how these approaches can be used to improve training outcomes, as well as teleoperator vigilance and decision-making. We also describe how neuromodulation can help remote operators during complex or high-risk tasks by mitigating impulsive decision-making and cognitive errors. While our review advocates for incorporating neurotechnology into remote operator training programs, continued research is required to evaluate the how these approaches will impact industrial safety and workforce readiness.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1491494"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurotechnology for enhancing human operation of robotic and semi-autonomous systems.\",\"authors\":\"William J Tyler, Anusha Adavikottu, Christian Lopez Blanco, Archana Mysore, Christopher Blais, Marco Santello, Avinash Unnikrishnan\",\"doi\":\"10.3389/frobt.2025.1491494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human operators of remote and semi-autonomous systems must have a high level of executive function to safely and efficiently conduct operations. These operators face unique cognitive challenges when monitoring and controlling robotic machines, such as vehicles, drones, and construction equipment. The development of safe and experienced human operators of remote machines requires structured training and credentialing programs. This review critically evaluates the potential for incorporating neurotechnology into remote systems operator training and work to enhance human-machine interactions, performance, and safety. Recent evidence demonstrating that different noninvasive neuromodulation and neurofeedback methods can improve critical executive functions such as attention, learning, memory, and cognitive control is reviewed. We further describe how these approaches can be used to improve training outcomes, as well as teleoperator vigilance and decision-making. We also describe how neuromodulation can help remote operators during complex or high-risk tasks by mitigating impulsive decision-making and cognitive errors. While our review advocates for incorporating neurotechnology into remote operator training programs, continued research is required to evaluate the how these approaches will impact industrial safety and workforce readiness.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1491494\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1491494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1491494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Neurotechnology for enhancing human operation of robotic and semi-autonomous systems.
Human operators of remote and semi-autonomous systems must have a high level of executive function to safely and efficiently conduct operations. These operators face unique cognitive challenges when monitoring and controlling robotic machines, such as vehicles, drones, and construction equipment. The development of safe and experienced human operators of remote machines requires structured training and credentialing programs. This review critically evaluates the potential for incorporating neurotechnology into remote systems operator training and work to enhance human-machine interactions, performance, and safety. Recent evidence demonstrating that different noninvasive neuromodulation and neurofeedback methods can improve critical executive functions such as attention, learning, memory, and cognitive control is reviewed. We further describe how these approaches can be used to improve training outcomes, as well as teleoperator vigilance and decision-making. We also describe how neuromodulation can help remote operators during complex or high-risk tasks by mitigating impulsive decision-making and cognitive errors. While our review advocates for incorporating neurotechnology into remote operator training programs, continued research is required to evaluate the how these approaches will impact industrial safety and workforce readiness.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.