Kévin Leguay, Mariana Acevedo, Eva Colic, Preya U Patel, Saeideh Shamsi, Helen Lb Chan, Sharon Sun, Daneck Lang-Ouellette, Benny Chan, Xiaoqin Zhan, Ray W Turner, Joseph Mancini, Oliver A Kent
{"title":"fmrp - n的相互作用组揭示了脆性X神经元细胞功能的关键相互作用。","authors":"Kévin Leguay, Mariana Acevedo, Eva Colic, Preya U Patel, Saeideh Shamsi, Helen Lb Chan, Sharon Sun, Daneck Lang-Ouellette, Benny Chan, Xiaoqin Zhan, Ray W Turner, Joseph Mancini, Oliver A Kent","doi":"10.1016/j.jbc.2025.110341","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic protein replacement has demonstrated pre-clinical and clinical efficacy in neurological disorders but has not been used clinically for Fragile X syndrome (FXS), a genetic neurodevelopmental disorder caused by loss of Fragile X messenger ribonucleoprotein (FMRP). FXS results from a triplet repeat expansion of over 200 CGG repeats in the 5'-UTR of the FMR1 gene leading to epigenetic silencing of FMRP. Currently, no clinically approved disease-modifying treatments for FXS exist. Recently, a tat-conjugated FMRP fragment encompassing residues 1-297 (FMRP N-tat) was shown to restore aspects of neuronal function in a mouse model of FXS. Promising in vivo data hinted to the therapeutic potential of FMRP N-tat. Herein, affinity purification mass spectrometry was used to identify the FMRP N-tat interactome in tsA-201 FMR1 knockout cells and FXS patient iPSC-derived neurons. The FMRP N-tat interactome included RNA binding proteins and constituents of the ribosome, which aligned closely with the known functions of FMRP. Further, the FMRP N-tat associated proteins included FXR2, STAU1, TRIM28, C1QBP, VDAC2, and several ribosomal proteins to regulate mRNA stability, cellular stress responses, mitochondrial function, and translation. The results highlight the potential of FMRP N-tat to orchestrate assembly of factors to correct lost function in FMRP deficient cells.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110341"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactome of FMRP-N-tat therapeutic unveils key interactions for cellular function in Fragile X neurons.\",\"authors\":\"Kévin Leguay, Mariana Acevedo, Eva Colic, Preya U Patel, Saeideh Shamsi, Helen Lb Chan, Sharon Sun, Daneck Lang-Ouellette, Benny Chan, Xiaoqin Zhan, Ray W Turner, Joseph Mancini, Oliver A Kent\",\"doi\":\"10.1016/j.jbc.2025.110341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic protein replacement has demonstrated pre-clinical and clinical efficacy in neurological disorders but has not been used clinically for Fragile X syndrome (FXS), a genetic neurodevelopmental disorder caused by loss of Fragile X messenger ribonucleoprotein (FMRP). FXS results from a triplet repeat expansion of over 200 CGG repeats in the 5'-UTR of the FMR1 gene leading to epigenetic silencing of FMRP. Currently, no clinically approved disease-modifying treatments for FXS exist. Recently, a tat-conjugated FMRP fragment encompassing residues 1-297 (FMRP N-tat) was shown to restore aspects of neuronal function in a mouse model of FXS. Promising in vivo data hinted to the therapeutic potential of FMRP N-tat. Herein, affinity purification mass spectrometry was used to identify the FMRP N-tat interactome in tsA-201 FMR1 knockout cells and FXS patient iPSC-derived neurons. The FMRP N-tat interactome included RNA binding proteins and constituents of the ribosome, which aligned closely with the known functions of FMRP. Further, the FMRP N-tat associated proteins included FXR2, STAU1, TRIM28, C1QBP, VDAC2, and several ribosomal proteins to regulate mRNA stability, cellular stress responses, mitochondrial function, and translation. The results highlight the potential of FMRP N-tat to orchestrate assembly of factors to correct lost function in FMRP deficient cells.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110341\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110341\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110341","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interactome of FMRP-N-tat therapeutic unveils key interactions for cellular function in Fragile X neurons.
Therapeutic protein replacement has demonstrated pre-clinical and clinical efficacy in neurological disorders but has not been used clinically for Fragile X syndrome (FXS), a genetic neurodevelopmental disorder caused by loss of Fragile X messenger ribonucleoprotein (FMRP). FXS results from a triplet repeat expansion of over 200 CGG repeats in the 5'-UTR of the FMR1 gene leading to epigenetic silencing of FMRP. Currently, no clinically approved disease-modifying treatments for FXS exist. Recently, a tat-conjugated FMRP fragment encompassing residues 1-297 (FMRP N-tat) was shown to restore aspects of neuronal function in a mouse model of FXS. Promising in vivo data hinted to the therapeutic potential of FMRP N-tat. Herein, affinity purification mass spectrometry was used to identify the FMRP N-tat interactome in tsA-201 FMR1 knockout cells and FXS patient iPSC-derived neurons. The FMRP N-tat interactome included RNA binding proteins and constituents of the ribosome, which aligned closely with the known functions of FMRP. Further, the FMRP N-tat associated proteins included FXR2, STAU1, TRIM28, C1QBP, VDAC2, and several ribosomal proteins to regulate mRNA stability, cellular stress responses, mitochondrial function, and translation. The results highlight the potential of FMRP N-tat to orchestrate assembly of factors to correct lost function in FMRP deficient cells.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.