Govinda Rai Sarma, Rajkumar U Zunjare, Vignesh Muthusamy, Ravindra K Kasana, Ikkurti Gopinath, Bhavna Singh, Godawari S Pawar, Neha Sharma, Hriipulou Duo, Rashmi Chhabra, Rakesh K Devlash, Satish K Guleria, Viswanathan Chinnusamy, Firoz Hossain
{"title":"利用多重选择指标鉴定亚热带玉米理想株型选育系。","authors":"Govinda Rai Sarma, Rajkumar U Zunjare, Vignesh Muthusamy, Ravindra K Kasana, Ikkurti Gopinath, Bhavna Singh, Godawari S Pawar, Neha Sharma, Hriipulou Duo, Rashmi Chhabra, Rakesh K Devlash, Satish K Guleria, Viswanathan Chinnusamy, Firoz Hossain","doi":"10.1007/s13353-025-00975-3","DOIUrl":null,"url":null,"abstract":"<p><p>High plant density assumes significance for higher yield per unit area. However, reports on breeding for ideal plant architecture (IPA) in maize are limited due to lack of comprehensive characterization of germplasm. Here, we assessed genetic variation and identified inbreds for 14 plant architectural traits among 48 subtropical maize inbreds through multi-location analysis. Wide genetic variation for (i) stalk-related traits, viz., plant height (100.5-209.8 cm), ear height (26.4-106.3 cm), internode number (3.8-10.9), and internode length (8.1-15 cm); (ii) leaf-related traits, viz., leaf length (39.7-77.1 cm), leaf width (5.2-10.5 cm), leaf area (158.6-568.4 cm<sup>2</sup>), leaf angle (18.4-84.6°), leaf orientation value (2.2-71.3), number of leaves above-ear (3.2-7.2), and husk number (5.7-14.4); and (iii) tassel-related traits, viz., tassel height (21.8-34.9 cm), number of tassel branches (3.9-16.6), and tassel branching angle (10.2-78.4°) were observed. All traits showed significant variation due to environment and genotype × environment interactions. Correlation analysis implied that narrow leaf angle would produce compact tassel as well (r = 0.53, p < 0.001). Internode number and leaf width (r = - 0.33, p = 0.031), number of leaves and leaf length (r = 0.42, p = 0.004), plant height and leaf length (r = 0.39, p = 0.005), and leaf length and tassel height (r = 0.44, p = 0.003) were also associated. HKI-1105, CML-568, BAUIM-4, and BAUIM-2 were the most stable and promising inbreds with IPA using three popular selection indices (AMMI-TGSI, WAASBY-I, and MTSI). These promising inbreds could serve as suitable donors for germplasm diversification, besides generating hybrid combinations for high plant density. This is the first comprehensive analysis to characterize sub-tropically adapted maize inbreds for plant architectural traits.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of subtropical breeding lines for ideal plant architecture in maize through multiple selection indices.\",\"authors\":\"Govinda Rai Sarma, Rajkumar U Zunjare, Vignesh Muthusamy, Ravindra K Kasana, Ikkurti Gopinath, Bhavna Singh, Godawari S Pawar, Neha Sharma, Hriipulou Duo, Rashmi Chhabra, Rakesh K Devlash, Satish K Guleria, Viswanathan Chinnusamy, Firoz Hossain\",\"doi\":\"10.1007/s13353-025-00975-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High plant density assumes significance for higher yield per unit area. However, reports on breeding for ideal plant architecture (IPA) in maize are limited due to lack of comprehensive characterization of germplasm. Here, we assessed genetic variation and identified inbreds for 14 plant architectural traits among 48 subtropical maize inbreds through multi-location analysis. Wide genetic variation for (i) stalk-related traits, viz., plant height (100.5-209.8 cm), ear height (26.4-106.3 cm), internode number (3.8-10.9), and internode length (8.1-15 cm); (ii) leaf-related traits, viz., leaf length (39.7-77.1 cm), leaf width (5.2-10.5 cm), leaf area (158.6-568.4 cm<sup>2</sup>), leaf angle (18.4-84.6°), leaf orientation value (2.2-71.3), number of leaves above-ear (3.2-7.2), and husk number (5.7-14.4); and (iii) tassel-related traits, viz., tassel height (21.8-34.9 cm), number of tassel branches (3.9-16.6), and tassel branching angle (10.2-78.4°) were observed. All traits showed significant variation due to environment and genotype × environment interactions. Correlation analysis implied that narrow leaf angle would produce compact tassel as well (r = 0.53, p < 0.001). Internode number and leaf width (r = - 0.33, p = 0.031), number of leaves and leaf length (r = 0.42, p = 0.004), plant height and leaf length (r = 0.39, p = 0.005), and leaf length and tassel height (r = 0.44, p = 0.003) were also associated. HKI-1105, CML-568, BAUIM-4, and BAUIM-2 were the most stable and promising inbreds with IPA using three popular selection indices (AMMI-TGSI, WAASBY-I, and MTSI). These promising inbreds could serve as suitable donors for germplasm diversification, besides generating hybrid combinations for high plant density. This is the first comprehensive analysis to characterize sub-tropically adapted maize inbreds for plant architectural traits.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-025-00975-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-025-00975-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification of subtropical breeding lines for ideal plant architecture in maize through multiple selection indices.
High plant density assumes significance for higher yield per unit area. However, reports on breeding for ideal plant architecture (IPA) in maize are limited due to lack of comprehensive characterization of germplasm. Here, we assessed genetic variation and identified inbreds for 14 plant architectural traits among 48 subtropical maize inbreds through multi-location analysis. Wide genetic variation for (i) stalk-related traits, viz., plant height (100.5-209.8 cm), ear height (26.4-106.3 cm), internode number (3.8-10.9), and internode length (8.1-15 cm); (ii) leaf-related traits, viz., leaf length (39.7-77.1 cm), leaf width (5.2-10.5 cm), leaf area (158.6-568.4 cm2), leaf angle (18.4-84.6°), leaf orientation value (2.2-71.3), number of leaves above-ear (3.2-7.2), and husk number (5.7-14.4); and (iii) tassel-related traits, viz., tassel height (21.8-34.9 cm), number of tassel branches (3.9-16.6), and tassel branching angle (10.2-78.4°) were observed. All traits showed significant variation due to environment and genotype × environment interactions. Correlation analysis implied that narrow leaf angle would produce compact tassel as well (r = 0.53, p < 0.001). Internode number and leaf width (r = - 0.33, p = 0.031), number of leaves and leaf length (r = 0.42, p = 0.004), plant height and leaf length (r = 0.39, p = 0.005), and leaf length and tassel height (r = 0.44, p = 0.003) were also associated. HKI-1105, CML-568, BAUIM-4, and BAUIM-2 were the most stable and promising inbreds with IPA using three popular selection indices (AMMI-TGSI, WAASBY-I, and MTSI). These promising inbreds could serve as suitable donors for germplasm diversification, besides generating hybrid combinations for high plant density. This is the first comprehensive analysis to characterize sub-tropically adapted maize inbreds for plant architectural traits.
期刊介绍:
The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.