提高猕猴桃溃疡病病原菌丁香假单胞菌毒力的温度响应调节因子。actinidiae。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-05-15 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.05.017
Xueting He, Yifei Zhang, Chenbei Xu, Kaidi Fu, Yiqing Ding, Tiantian Zhang, Tingtao Chen, Aprodisia Murero, Limin Wang, Yuan Xu, Cheng Chen, Jinghui Yang, Li Li, Caihong Zhong, Lili Huang, Xin Deng, Xiaolong Shao, Guoliang Qian
{"title":"提高猕猴桃溃疡病病原菌丁香假单胞菌毒力的温度响应调节因子。actinidiae。","authors":"Xueting He, Yifei Zhang, Chenbei Xu, Kaidi Fu, Yiqing Ding, Tiantian Zhang, Tingtao Chen, Aprodisia Murero, Limin Wang, Yuan Xu, Cheng Chen, Jinghui Yang, Li Li, Caihong Zhong, Lili Huang, Xin Deng, Xiaolong Shao, Guoliang Qian","doi":"10.1016/j.csbj.2025.05.017","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (<i>Psa</i>), the causative agent of kiwifruit canker disease, poses significant threats to global kiwifruit production, resulting in substantial economic losses. Disease incidence is notably higher under cooler temperatures (<20℃), yet the molecular mechanisms underlying <i>Psa</i>'s temperature-dependent virulence remain poorly understood. Here, we identify RS16350, encoding a heat shock protein homolog, as a positive regulator of <i>Psa</i> pathogenicity specifically at low temperature (16℃) but not at optimal growth temperature (28℃). Mechanistic studies reveal that RS16350 physically interacts with HrpL, the RpoN-dependent sigma factor controlling type III secretion system (T3SS) expression in <i>Psa</i>. This interaction enhances HrpL's binding affinity to the <i>hrp-box</i> promoter element, thereby upregulating T3SS effector genes and increasing virulence. We designate this novel regulator as TrpR2 (temperature-responsive pathogenic regulator 2). These findings provide molecular insights into temperature-modulated virulence in a key plant pathogen and identify potential targets for developing innovative disease control strategies.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"1935-1944"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145522/pdf/","citationCount":"0","resultStr":"{\"title\":\"A temperature-responsive regulator that enhances virulence in the kiwifruit canker pathogen <i>Pseudomonas syringae</i> pv. a<i>ctinidiae</i>.\",\"authors\":\"Xueting He, Yifei Zhang, Chenbei Xu, Kaidi Fu, Yiqing Ding, Tiantian Zhang, Tingtao Chen, Aprodisia Murero, Limin Wang, Yuan Xu, Cheng Chen, Jinghui Yang, Li Li, Caihong Zhong, Lili Huang, Xin Deng, Xiaolong Shao, Guoliang Qian\",\"doi\":\"10.1016/j.csbj.2025.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (<i>Psa</i>), the causative agent of kiwifruit canker disease, poses significant threats to global kiwifruit production, resulting in substantial economic losses. Disease incidence is notably higher under cooler temperatures (<20℃), yet the molecular mechanisms underlying <i>Psa</i>'s temperature-dependent virulence remain poorly understood. Here, we identify RS16350, encoding a heat shock protein homolog, as a positive regulator of <i>Psa</i> pathogenicity specifically at low temperature (16℃) but not at optimal growth temperature (28℃). Mechanistic studies reveal that RS16350 physically interacts with HrpL, the RpoN-dependent sigma factor controlling type III secretion system (T3SS) expression in <i>Psa</i>. This interaction enhances HrpL's binding affinity to the <i>hrp-box</i> promoter element, thereby upregulating T3SS effector genes and increasing virulence. We designate this novel regulator as TrpR2 (temperature-responsive pathogenic regulator 2). These findings provide molecular insights into temperature-modulated virulence in a key plant pathogen and identify potential targets for developing innovative disease control strategies.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"1935-1944\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145522/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.05.017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.05.017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丁香假单胞菌。猕猴桃溃疡病的病原猕猴桃酸菌(actinidiae, Psa)对全球猕猴桃生产构成重大威胁,造成重大经济损失。在较低的温度下,疾病发病率明显更高(Psa的温度依赖性毒力仍然知之甚少。在这里,我们发现编码热休克蛋白同源物的RS16350在低温(16℃)下特异性地调节Psa致病性,而不是在最佳生长温度(28℃)下。机制研究表明,RS16350与Psa中控制III型分泌系统(T3SS)表达的rpo依赖性sigma因子HrpL相互作用。这种相互作用增强了HrpL与hrp-box启动子元件的结合亲和力,从而上调了T3SS效应基因并增加了毒力。我们将这种新的调节因子命名为TrpR2(温度响应致病性调节因子2)。这些发现为了解一种关键植物病原体的温度调节毒力提供了分子视角,并为开发创新的疾病控制策略确定了潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A temperature-responsive regulator that enhances virulence in the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae.

Pseudomonas syringae pv. actinidiae (Psa), the causative agent of kiwifruit canker disease, poses significant threats to global kiwifruit production, resulting in substantial economic losses. Disease incidence is notably higher under cooler temperatures (<20℃), yet the molecular mechanisms underlying Psa's temperature-dependent virulence remain poorly understood. Here, we identify RS16350, encoding a heat shock protein homolog, as a positive regulator of Psa pathogenicity specifically at low temperature (16℃) but not at optimal growth temperature (28℃). Mechanistic studies reveal that RS16350 physically interacts with HrpL, the RpoN-dependent sigma factor controlling type III secretion system (T3SS) expression in Psa. This interaction enhances HrpL's binding affinity to the hrp-box promoter element, thereby upregulating T3SS effector genes and increasing virulence. We designate this novel regulator as TrpR2 (temperature-responsive pathogenic regulator 2). These findings provide molecular insights into temperature-modulated virulence in a key plant pathogen and identify potential targets for developing innovative disease control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信