SinoMedminer:一个R包和闪亮的应用程序,用于挖掘和可视化传统中药配方。

IF 5.7 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He
{"title":"SinoMedminer:一个R包和闪亮的应用程序,用于挖掘和可视化传统中药配方。","authors":"Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He","doi":"10.1186/s13020-025-01127-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"80"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142817/pdf/","citationCount":"0","resultStr":"{\"title\":\"SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.\",\"authors\":\"Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He\",\"doi\":\"10.1186/s13020-025-01127-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"80\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01127-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01127-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过开发SinoMedminer R包及其Shiny web应用程序,解决了传统中医数据挖掘中主流方法的局限性。R包的核心功能包括数据清洗、转换、中医属性统计、关联规则探索和分析、聚类分析、共现网络分析、配方相似度分析、配方识别和剂量分析。这个包支持高效的项目分析,而不需要复杂的编码。附带的Shiny web应用程序为没有编程知识的用户提供了一个交互式的菜单驱动界面。SinoMedminer结合了编程语言的计算能力和用户友好的可访问性,显著提高了中医数据挖掘研究的效率和标准化。部署的服务器平台通过允许直接使用Shiny应用程序进一步简化了访问和可用性。通过优化数据处理和分析工作流程,中国医药科技有限公司增强了大数据处理能力,加快了研究进展和产品开发,促进了数字技术与中医药研究和临床实践的融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.

SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.

SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.

SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.

This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Medicine
Chinese Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍: Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine. Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies. Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信