Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He
{"title":"SinoMedminer:一个R包和闪亮的应用程序,用于挖掘和可视化传统中药配方。","authors":"Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He","doi":"10.1186/s13020-025-01127-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"80"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142817/pdf/","citationCount":"0","resultStr":"{\"title\":\"SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.\",\"authors\":\"Wenchao Dan, Xinyuan Guo, Guangzhong Zhang, Hui Zhang, Jin Liu, Qiushuang Li, Yang Chen, Qingyong He\",\"doi\":\"10.1186/s13020-025-01127-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"80\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01127-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01127-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
SinoMedminer: an R package and shiny application for mining and visualizing traditional Chinese medicine herbal formulas.
This study addresses limitations of mainstream approaches in traditional Chinese medicine (TCM) data mining by developing the SinoMedminer R package and its Shiny web application. The R package's core functionalities include data cleaning, transformation, TCM attribute statistics, association rule exploration and analysis, clustering analysis, co-occurrence network analysis, formula similarity analysis, formula identification, and dosage analysis. This package enables efficient project analyses without requiring complex coding. The accompanying Shiny web application provides an interactive, menu-driven interface for users without programming knowledge. SinoMedminer combines the computational power of a programming language with user-friendly accessibility, significantly enhancing the efficiency and standardization of TCM data mining research. A deployed server platform further simplifies access and usability by allowing direct utilization of the Shiny application. By optimizing data processing and analysis workflows, SinoMedminer enhances big data handling capabilities, accelerates research progress and product development, and promotes the integration of digital technologies into TCM research and clinical practice.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.