{"title":"基于必要基因的癌症类型特异性药物的系统鉴定及其在肺腺癌中的验证。","authors":"Xiang Lian, Xia Kuang, Dong-Dong Zhang, Qian Xu, Anqiang Ye, Cheng-Yu Wang, Hong-Tu Cui, Hai-Xia Guo, Ji-Yun Zhang, Yuan Liu, Ge-Fei Hao, Zhenshun Cheng, Feng-Biao Guo","doi":"10.1093/bib/bbaf266","DOIUrl":null,"url":null,"abstract":"<p><p>Depicting a global landscape of essential gene-targeting drugs would provide more opportunities for cancer therapy. However, a systematic investigation on drugs targeting essential genes still has not been reported. We suppose that drugs targeting cancer-type-specific essential genes would generally have less toxicity than those targeting pan-cancer essential genes. A scoring function-based strategy was developed to identify cancer-type-specific targets and drugs. The EssentialitySpecificityScore ranked the essential genes in 19 cancer types, and 1151 top genes were identified as cancer-type-specific targets. Combining target-drug interaction databases with research/marketing status, 370 cancer-type-specific drugs were identified, bound to 100 out of all identified targets. Profiles of applied cancer types of identified targets and drugs illustrate the scoring strategy's effectiveness: most drugs apply to cancer types <10. Seven drugs with no previous anticancer evidence were validated in 11 lung adenocarcinoma cell lines, and lower inhibition rates (from 9.4% to 44.0%) were observed in 10 normal cell lines. This difference is statistically significant (Student's t-test, P ≤ .0001), confirming the rationality of our supposition. Our built EGKG (Essential Gene Knowledge Graph) forms a computational basis to uncover essential gene targets and drugs for specific cancer types. It is available at http://gepa.org.cn/egkg/. Also, our experimental result suggests that combining drugs with orthogonal essentiality may be an alternative way to improve anticancer effects while maintaining biocompatibility. The code and data are available at https://github.com/KKINGA1/EGKG_data_process.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic identification of cancer-type-specific drugs based on essential genes and validations in lung adenocarcinoma.\",\"authors\":\"Xiang Lian, Xia Kuang, Dong-Dong Zhang, Qian Xu, Anqiang Ye, Cheng-Yu Wang, Hong-Tu Cui, Hai-Xia Guo, Ji-Yun Zhang, Yuan Liu, Ge-Fei Hao, Zhenshun Cheng, Feng-Biao Guo\",\"doi\":\"10.1093/bib/bbaf266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Depicting a global landscape of essential gene-targeting drugs would provide more opportunities for cancer therapy. However, a systematic investigation on drugs targeting essential genes still has not been reported. We suppose that drugs targeting cancer-type-specific essential genes would generally have less toxicity than those targeting pan-cancer essential genes. A scoring function-based strategy was developed to identify cancer-type-specific targets and drugs. The EssentialitySpecificityScore ranked the essential genes in 19 cancer types, and 1151 top genes were identified as cancer-type-specific targets. Combining target-drug interaction databases with research/marketing status, 370 cancer-type-specific drugs were identified, bound to 100 out of all identified targets. Profiles of applied cancer types of identified targets and drugs illustrate the scoring strategy's effectiveness: most drugs apply to cancer types <10. Seven drugs with no previous anticancer evidence were validated in 11 lung adenocarcinoma cell lines, and lower inhibition rates (from 9.4% to 44.0%) were observed in 10 normal cell lines. This difference is statistically significant (Student's t-test, P ≤ .0001), confirming the rationality of our supposition. Our built EGKG (Essential Gene Knowledge Graph) forms a computational basis to uncover essential gene targets and drugs for specific cancer types. It is available at http://gepa.org.cn/egkg/. Also, our experimental result suggests that combining drugs with orthogonal essentiality may be an alternative way to improve anticancer effects while maintaining biocompatibility. The code and data are available at https://github.com/KKINGA1/EGKG_data_process.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf266\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf266","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Systematic identification of cancer-type-specific drugs based on essential genes and validations in lung adenocarcinoma.
Depicting a global landscape of essential gene-targeting drugs would provide more opportunities for cancer therapy. However, a systematic investigation on drugs targeting essential genes still has not been reported. We suppose that drugs targeting cancer-type-specific essential genes would generally have less toxicity than those targeting pan-cancer essential genes. A scoring function-based strategy was developed to identify cancer-type-specific targets and drugs. The EssentialitySpecificityScore ranked the essential genes in 19 cancer types, and 1151 top genes were identified as cancer-type-specific targets. Combining target-drug interaction databases with research/marketing status, 370 cancer-type-specific drugs were identified, bound to 100 out of all identified targets. Profiles of applied cancer types of identified targets and drugs illustrate the scoring strategy's effectiveness: most drugs apply to cancer types <10. Seven drugs with no previous anticancer evidence were validated in 11 lung adenocarcinoma cell lines, and lower inhibition rates (from 9.4% to 44.0%) were observed in 10 normal cell lines. This difference is statistically significant (Student's t-test, P ≤ .0001), confirming the rationality of our supposition. Our built EGKG (Essential Gene Knowledge Graph) forms a computational basis to uncover essential gene targets and drugs for specific cancer types. It is available at http://gepa.org.cn/egkg/. Also, our experimental result suggests that combining drugs with orthogonal essentiality may be an alternative way to improve anticancer effects while maintaining biocompatibility. The code and data are available at https://github.com/KKINGA1/EGKG_data_process.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.