{"title":"人工智能驱动的环状rna疫苗开发:多模式协同优化和生物医学应用的新范式。","authors":"Yan Zhao, Huaiyu Wang","doi":"10.1093/bib/bbaf263","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA (circRNA) vaccines have emerged as a groundbreaking innovation in infectious disease prevention and cancer immunotherapy, offering superior stability and reduced immunogenicity compared to conventional linear messenger RNA (mRNA) vaccines. While linear mRNA vaccines are prone to degradation and can trigger strong innate immune responses, covalently closed circRNA vaccines leverage their unique circular structure to enhance molecular stability and minimize innate immune activation, positioning them as a next-generation platform for vaccine development. Artificial intelligence (AI) is revolutionizing circRNA vaccine design and optimization. Deep learning models, such as convolutional neural networks (CNNs) and Transformers, integrate multi-omics data to refine antigen prediction, RNA secondary structure modeling, and lipid nanoparticle delivery system formulation, surpassing traditional bioinformatics approaches in both accuracy and efficiency. While AI-driven bioinformatics enhances antigen screening and delivery system modeling, generative AI accelerates literature synthesis and experimental planning-though the risk of fabricated references and limited biological interpretability hinders its reliability. Despite these advancements, challenges such as the \"black-box\" nature of AI algorithms, unreliable literature retrieval, and insufficient integration of biological mechanisms underscore the necessity for a hybrid \"AI-traditional-experimental\" paradigm. This approach integrates explainable AI frameworks, multi-omics validation, and ethical oversight to ensure clinical translatability. Future research should prioritize mechanism-driven AI models, real-time experimental feedback, and rigorous ethical standards to fully unlock the potential of circRNA vaccines in precision oncology and global health.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-driven circRNA vaccine development: multimodal collaborative optimization and a new paradigm for biomedical applications.\",\"authors\":\"Yan Zhao, Huaiyu Wang\",\"doi\":\"10.1093/bib/bbaf263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA (circRNA) vaccines have emerged as a groundbreaking innovation in infectious disease prevention and cancer immunotherapy, offering superior stability and reduced immunogenicity compared to conventional linear messenger RNA (mRNA) vaccines. While linear mRNA vaccines are prone to degradation and can trigger strong innate immune responses, covalently closed circRNA vaccines leverage their unique circular structure to enhance molecular stability and minimize innate immune activation, positioning them as a next-generation platform for vaccine development. Artificial intelligence (AI) is revolutionizing circRNA vaccine design and optimization. Deep learning models, such as convolutional neural networks (CNNs) and Transformers, integrate multi-omics data to refine antigen prediction, RNA secondary structure modeling, and lipid nanoparticle delivery system formulation, surpassing traditional bioinformatics approaches in both accuracy and efficiency. While AI-driven bioinformatics enhances antigen screening and delivery system modeling, generative AI accelerates literature synthesis and experimental planning-though the risk of fabricated references and limited biological interpretability hinders its reliability. Despite these advancements, challenges such as the \\\"black-box\\\" nature of AI algorithms, unreliable literature retrieval, and insufficient integration of biological mechanisms underscore the necessity for a hybrid \\\"AI-traditional-experimental\\\" paradigm. This approach integrates explainable AI frameworks, multi-omics validation, and ethical oversight to ensure clinical translatability. Future research should prioritize mechanism-driven AI models, real-time experimental feedback, and rigorous ethical standards to fully unlock the potential of circRNA vaccines in precision oncology and global health.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf263\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf263","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Artificial intelligence-driven circRNA vaccine development: multimodal collaborative optimization and a new paradigm for biomedical applications.
Circular RNA (circRNA) vaccines have emerged as a groundbreaking innovation in infectious disease prevention and cancer immunotherapy, offering superior stability and reduced immunogenicity compared to conventional linear messenger RNA (mRNA) vaccines. While linear mRNA vaccines are prone to degradation and can trigger strong innate immune responses, covalently closed circRNA vaccines leverage their unique circular structure to enhance molecular stability and minimize innate immune activation, positioning them as a next-generation platform for vaccine development. Artificial intelligence (AI) is revolutionizing circRNA vaccine design and optimization. Deep learning models, such as convolutional neural networks (CNNs) and Transformers, integrate multi-omics data to refine antigen prediction, RNA secondary structure modeling, and lipid nanoparticle delivery system formulation, surpassing traditional bioinformatics approaches in both accuracy and efficiency. While AI-driven bioinformatics enhances antigen screening and delivery system modeling, generative AI accelerates literature synthesis and experimental planning-though the risk of fabricated references and limited biological interpretability hinders its reliability. Despite these advancements, challenges such as the "black-box" nature of AI algorithms, unreliable literature retrieval, and insufficient integration of biological mechanisms underscore the necessity for a hybrid "AI-traditional-experimental" paradigm. This approach integrates explainable AI frameworks, multi-omics validation, and ethical oversight to ensure clinical translatability. Future research should prioritize mechanism-driven AI models, real-time experimental feedback, and rigorous ethical standards to fully unlock the potential of circRNA vaccines in precision oncology and global health.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.