GluN1/GluN3A抑制剂对比学习筛选模型

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Li, Yue Zeng, Yi-da Xiong, Hao-Chen Wu, Sui Fang, Zhi-Yan Qu, Yan Zhu, Bo Du, Zhao-Bing Gao, Wen-Bin Hu
{"title":"GluN1/GluN3A抑制剂对比学习筛选模型","authors":"Kun Li, Yue Zeng, Yi-da Xiong, Hao-Chen Wu, Sui Fang, Zhi-Yan Qu, Yan Zhu, Bo Du, Zhao-Bing Gao, Wen-Bin Hu","doi":"10.1038/s41401-025-01580-0","DOIUrl":null,"url":null,"abstract":"<p><p>GluN3A-containing NMDA receptors have recently emerged as promising therapeutic targets for neurological disorders. However, discovering potent modulators remains a significant challenge, primarily due to the limitations of traditional high-throughput screening methods. In this study, we introduce a novel drug-target affinity prediction method, CLG-DTA, designed to enhance drug discovery for the GluN1/GluN3A receptor. This graph contrastive learning-based method incorporates natural language supervision by transforming regression labels into textual representation, and integrating them with traditional affinity data to enhance molecular representation. Additionally, a numerical knowledge graph is employed to refine continuous text embeddings, enabling precise modeling of complex drug-target interactions across diverse data modalities. Using CLG-DTA, we screened a library of 18 million compounds and identified 12 candidates for experimental validation. Among them, five compounds exhibited significant activity, with Boeravinone E demonstrating the highest potency ( <math> <msub><mrow><mi>IC</mi></mrow> <mrow><mn>50</mn></mrow> </msub> </math>  = 3.40 <math><mo>±</mo></math> 0.91 μM). These findings highlight the potential of CLG-DTA in accelerating the identification of promising GluN1/GluN3A modulators and lay a robust foundation for future therapeutic development.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors.\",\"authors\":\"Kun Li, Yue Zeng, Yi-da Xiong, Hao-Chen Wu, Sui Fang, Zhi-Yan Qu, Yan Zhu, Bo Du, Zhao-Bing Gao, Wen-Bin Hu\",\"doi\":\"10.1038/s41401-025-01580-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GluN3A-containing NMDA receptors have recently emerged as promising therapeutic targets for neurological disorders. However, discovering potent modulators remains a significant challenge, primarily due to the limitations of traditional high-throughput screening methods. In this study, we introduce a novel drug-target affinity prediction method, CLG-DTA, designed to enhance drug discovery for the GluN1/GluN3A receptor. This graph contrastive learning-based method incorporates natural language supervision by transforming regression labels into textual representation, and integrating them with traditional affinity data to enhance molecular representation. Additionally, a numerical knowledge graph is employed to refine continuous text embeddings, enabling precise modeling of complex drug-target interactions across diverse data modalities. Using CLG-DTA, we screened a library of 18 million compounds and identified 12 candidates for experimental validation. Among them, five compounds exhibited significant activity, with Boeravinone E demonstrating the highest potency ( <math> <msub><mrow><mi>IC</mi></mrow> <mrow><mn>50</mn></mrow> </msub> </math>  = 3.40 <math><mo>±</mo></math> 0.91 μM). These findings highlight the potential of CLG-DTA in accelerating the identification of promising GluN1/GluN3A modulators and lay a robust foundation for future therapeutic development.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01580-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01580-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含有glun3a的NMDA受体最近成为神经系统疾病的有希望的治疗靶点。然而,发现有效的调节剂仍然是一个重大的挑战,主要是由于传统的高通量筛选方法的局限性。在这项研究中,我们引入了一种新的药物靶点亲和力预测方法CLG-DTA,旨在加强GluN1/GluN3A受体的药物发现。这种基于图对比学习的方法通过将回归标签转换为文本表示,并将其与传统亲和数据集成以增强分子表示,从而结合自然语言监督。此外,一个数字知识图被用来细化连续文本嵌入,使复杂的药物-靶标相互作用跨不同的数据模式的精确建模。使用CLG-DTA,我们筛选了一个包含1800万种化合物的文库,并确定了12种候选化合物进行实验验证。其中,Boeravinone E效价最高(ic50 = 3.40±0.91 μM)。这些发现突出了CLG-DTA在加速鉴定有前途的GluN1/GluN3A调节剂方面的潜力,并为未来的治疗开发奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors.

GluN3A-containing NMDA receptors have recently emerged as promising therapeutic targets for neurological disorders. However, discovering potent modulators remains a significant challenge, primarily due to the limitations of traditional high-throughput screening methods. In this study, we introduce a novel drug-target affinity prediction method, CLG-DTA, designed to enhance drug discovery for the GluN1/GluN3A receptor. This graph contrastive learning-based method incorporates natural language supervision by transforming regression labels into textual representation, and integrating them with traditional affinity data to enhance molecular representation. Additionally, a numerical knowledge graph is employed to refine continuous text embeddings, enabling precise modeling of complex drug-target interactions across diverse data modalities. Using CLG-DTA, we screened a library of 18 million compounds and identified 12 candidates for experimental validation. Among them, five compounds exhibited significant activity, with Boeravinone E demonstrating the highest potency ( IC 50  = 3.40 ± 0.91 μM). These findings highlight the potential of CLG-DTA in accelerating the identification of promising GluN1/GluN3A modulators and lay a robust foundation for future therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信