Vineetha Shaji, S. Amrutha, Ravishankar Pervaje, Chandran S. Abhinand, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad, Prashant Kumar Modi
{"title":"基于BACE1蛋白的综合代谢组学和网络药理学分析探索野生总状芦笋对阿尔茨海默病的治疗作用。","authors":"Vineetha Shaji, S. Amrutha, Ravishankar Pervaje, Chandran S. Abhinand, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad, Prashant Kumar Modi","doi":"10.1007/s11064-025-04440-9","DOIUrl":null,"url":null,"abstract":"<div><p><i>Asparagus racemosus</i> Willd, an Ayurvedic medicine, is known for its antioxidant, antiviral, immune-boosting, and neuro-nutraceutical benefits, particularly in female health. However, its metabolites, mechanisms of action, and target proteins are yet to be fully understood. The present study aimed to identify the metabolite constitution and metabolite-associated proteins in neuroprotective mechanisms in neurodegenerative disease. Mass spectrometry-based untargeted metabolomics and network pharmacology approaches were used to identify metabolites in <i>A. racemosus</i> root extract. In vitro studies, including oxidative stress regulation, neuronal apoptosis, and western blot analysis, were conducted to assess the plant’s impact on Alzheimer’s disease (AD). We identified 44,014 spectra in positive and negative modes, corresponding to 31,931 non-redundant metabolites at the MS1 level and 5,608 at the MS2 level, from <i>A</i>. <i>racemosus</i> root extract, which include metabolites belonging to phenols, lipids, flavonoids, isoprenoids, and fatty acyls. Novel and known compounds were identified, such as asparagine, sitosterol, arginine, muzanzagenin, pinene, flavone, and kaempferol. Network pharmacology predicted 44 potential human protein targets linked to Alzheimer’s disease from these metabolites. These proteins belong to neuromodulator classes, including BACE1, CHRM3, APP, MAP2K1, GSK3B, and TNF, and some of the metabolites of <i>A. racemosus</i> including muzanzagenin interact with BACE1 protein. In vitro validation showed that <i>A</i>. <i>racemosus</i> regulates ROS levels, apoptosis pathways, and BACE1 expression in Alzheimer’s disease (AD), highlighting its therapeutic potential. This study integrates network pharmacology and metabolomics, paving the way for clinical research into the neuropharmacological effects of <i>A</i>. <i>racemosus</i> on neurological disorders.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Asparagus racemosus Willd for Alzheimer’s Disease Through Integrated Metabolomics and Network Pharmacology Analyses Targeting BACE1 Protein\",\"authors\":\"Vineetha Shaji, S. Amrutha, Ravishankar Pervaje, Chandran S. Abhinand, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad, Prashant Kumar Modi\",\"doi\":\"10.1007/s11064-025-04440-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Asparagus racemosus</i> Willd, an Ayurvedic medicine, is known for its antioxidant, antiviral, immune-boosting, and neuro-nutraceutical benefits, particularly in female health. However, its metabolites, mechanisms of action, and target proteins are yet to be fully understood. The present study aimed to identify the metabolite constitution and metabolite-associated proteins in neuroprotective mechanisms in neurodegenerative disease. Mass spectrometry-based untargeted metabolomics and network pharmacology approaches were used to identify metabolites in <i>A. racemosus</i> root extract. In vitro studies, including oxidative stress regulation, neuronal apoptosis, and western blot analysis, were conducted to assess the plant’s impact on Alzheimer’s disease (AD). We identified 44,014 spectra in positive and negative modes, corresponding to 31,931 non-redundant metabolites at the MS1 level and 5,608 at the MS2 level, from <i>A</i>. <i>racemosus</i> root extract, which include metabolites belonging to phenols, lipids, flavonoids, isoprenoids, and fatty acyls. Novel and known compounds were identified, such as asparagine, sitosterol, arginine, muzanzagenin, pinene, flavone, and kaempferol. Network pharmacology predicted 44 potential human protein targets linked to Alzheimer’s disease from these metabolites. These proteins belong to neuromodulator classes, including BACE1, CHRM3, APP, MAP2K1, GSK3B, and TNF, and some of the metabolites of <i>A. racemosus</i> including muzanzagenin interact with BACE1 protein. In vitro validation showed that <i>A</i>. <i>racemosus</i> regulates ROS levels, apoptosis pathways, and BACE1 expression in Alzheimer’s disease (AD), highlighting its therapeutic potential. This study integrates network pharmacology and metabolomics, paving the way for clinical research into the neuropharmacological effects of <i>A</i>. <i>racemosus</i> on neurological disorders.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04440-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04440-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploration of Asparagus racemosus Willd for Alzheimer’s Disease Through Integrated Metabolomics and Network Pharmacology Analyses Targeting BACE1 Protein
Asparagus racemosus Willd, an Ayurvedic medicine, is known for its antioxidant, antiviral, immune-boosting, and neuro-nutraceutical benefits, particularly in female health. However, its metabolites, mechanisms of action, and target proteins are yet to be fully understood. The present study aimed to identify the metabolite constitution and metabolite-associated proteins in neuroprotective mechanisms in neurodegenerative disease. Mass spectrometry-based untargeted metabolomics and network pharmacology approaches were used to identify metabolites in A. racemosus root extract. In vitro studies, including oxidative stress regulation, neuronal apoptosis, and western blot analysis, were conducted to assess the plant’s impact on Alzheimer’s disease (AD). We identified 44,014 spectra in positive and negative modes, corresponding to 31,931 non-redundant metabolites at the MS1 level and 5,608 at the MS2 level, from A. racemosus root extract, which include metabolites belonging to phenols, lipids, flavonoids, isoprenoids, and fatty acyls. Novel and known compounds were identified, such as asparagine, sitosterol, arginine, muzanzagenin, pinene, flavone, and kaempferol. Network pharmacology predicted 44 potential human protein targets linked to Alzheimer’s disease from these metabolites. These proteins belong to neuromodulator classes, including BACE1, CHRM3, APP, MAP2K1, GSK3B, and TNF, and some of the metabolites of A. racemosus including muzanzagenin interact with BACE1 protein. In vitro validation showed that A. racemosus regulates ROS levels, apoptosis pathways, and BACE1 expression in Alzheimer’s disease (AD), highlighting its therapeutic potential. This study integrates network pharmacology and metabolomics, paving the way for clinical research into the neuropharmacological effects of A. racemosus on neurological disorders.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.