Denis A. Ikonnikov, Erdeny C. Darmaev, Sergey A. Myslivets
{"title":"双叉形光栅上偏移入射光束的菲涅耳衍射","authors":"Denis A. Ikonnikov, Erdeny C. Darmaev, Sergey A. Myslivets","doi":"10.1002/andp.202400436","DOIUrl":null,"url":null,"abstract":"<p>Diffraction of shifted incident beam on double fork-shaped gratings with unit charges has been numerically simulated by the using of the Fresnel diffraction integral. The trajectories of singularities dependance on the position of the incident Gaussian beam have been investigated. For the case of same topological charges of dislocations it is shown that the shift of incident beam along the horizontal axis leads to the shift of singularities trajectories along the vertical axis, and vice versa. It is shown, that these results can be qualitatively predicted by using the hydrodynamic approach. For the case of diffraction on double fork-shaped grating which have dislocations with topological charges of opposite signs, the effect of the incident beam center shift depends on the initial distance between dislocations <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n </mrow>\n <annotation>$2r_d$</annotation>\n </semantics></math> as well as the initial positions of positive and negative topological charges. The aforementioned findings shows that the result of diffraction on the double fork-shaped gratings highly depends on the position of the incident beam center, and therefore, it provides the valuable information that can enrich our understanding of the spatial dynamics of optical vortices.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fresnel Diffraction of a Shifted Incident Beam on Double Fork-Shaped Gratings\",\"authors\":\"Denis A. Ikonnikov, Erdeny C. Darmaev, Sergey A. Myslivets\",\"doi\":\"10.1002/andp.202400436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffraction of shifted incident beam on double fork-shaped gratings with unit charges has been numerically simulated by the using of the Fresnel diffraction integral. The trajectories of singularities dependance on the position of the incident Gaussian beam have been investigated. For the case of same topological charges of dislocations it is shown that the shift of incident beam along the horizontal axis leads to the shift of singularities trajectories along the vertical axis, and vice versa. It is shown, that these results can be qualitatively predicted by using the hydrodynamic approach. For the case of diffraction on double fork-shaped grating which have dislocations with topological charges of opposite signs, the effect of the incident beam center shift depends on the initial distance between dislocations <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n </mrow>\\n <annotation>$2r_d$</annotation>\\n </semantics></math> as well as the initial positions of positive and negative topological charges. The aforementioned findings shows that the result of diffraction on the double fork-shaped gratings highly depends on the position of the incident beam center, and therefore, it provides the valuable information that can enrich our understanding of the spatial dynamics of optical vortices.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400436\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400436","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fresnel Diffraction of a Shifted Incident Beam on Double Fork-Shaped Gratings
Diffraction of shifted incident beam on double fork-shaped gratings with unit charges has been numerically simulated by the using of the Fresnel diffraction integral. The trajectories of singularities dependance on the position of the incident Gaussian beam have been investigated. For the case of same topological charges of dislocations it is shown that the shift of incident beam along the horizontal axis leads to the shift of singularities trajectories along the vertical axis, and vice versa. It is shown, that these results can be qualitatively predicted by using the hydrodynamic approach. For the case of diffraction on double fork-shaped grating which have dislocations with topological charges of opposite signs, the effect of the incident beam center shift depends on the initial distance between dislocations as well as the initial positions of positive and negative topological charges. The aforementioned findings shows that the result of diffraction on the double fork-shaped gratings highly depends on the position of the incident beam center, and therefore, it provides the valuable information that can enrich our understanding of the spatial dynamics of optical vortices.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.