{"title":"关联规则分析:敏感性分析","authors":"Ron S. Kenett, Chris Gotwalt","doi":"10.1002/asmb.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Association rules are extracting information from transactional databases of documents with a collection of items also called “tokens” or “words”. The approach is used in the analysis of text records, of social media and of consumer behaviour. We present an innovative sensitivity analysis of association rules (AR) measures of interest. In text analytics, a document term matrix (DTM) consists of rows referring to documents and columns corresponding to items. In binary weights, “1” indicates the presence of a term in a document and “0” otherwise. From a DTM one computes measures of interest characterising ARs. The approach we introduce is based on the application of befitting cross validation (BCV) principles to ARs. The sensitivity analysis of ARs is based on computer generated repeated shuffling of training and validation sets that provide an assessment of the uncertainty of AR measures of interest. We demonstrate this methodology with reports of symptoms associated with a Nicardipine drug product used in the treatment of high blood pressure and angina. Patients self-reports on side effect events are analysed. Association rules, derived from these reports, describe combinations of terms in these reports. AR measures of interest are defined in section 1. In section 2 we introduce the case study that motivates the method we propose. In section 3 we apply BCV principles by concatenating side effect events of Nicardipine by patient. Sensitivity analysis (SA) of ARs is introduced and demonstrated in section 4. The sensitivity analysis method presented here is discussed in section 5 where we formulate general data analysis considerations on how to organise and analyse semantic data.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analysis of Association Rules: Sensitivity Analysis\",\"authors\":\"Ron S. Kenett, Chris Gotwalt\",\"doi\":\"10.1002/asmb.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Association rules are extracting information from transactional databases of documents with a collection of items also called “tokens” or “words”. The approach is used in the analysis of text records, of social media and of consumer behaviour. We present an innovative sensitivity analysis of association rules (AR) measures of interest. In text analytics, a document term matrix (DTM) consists of rows referring to documents and columns corresponding to items. In binary weights, “1” indicates the presence of a term in a document and “0” otherwise. From a DTM one computes measures of interest characterising ARs. The approach we introduce is based on the application of befitting cross validation (BCV) principles to ARs. The sensitivity analysis of ARs is based on computer generated repeated shuffling of training and validation sets that provide an assessment of the uncertainty of AR measures of interest. We demonstrate this methodology with reports of symptoms associated with a Nicardipine drug product used in the treatment of high blood pressure and angina. Patients self-reports on side effect events are analysed. Association rules, derived from these reports, describe combinations of terms in these reports. AR measures of interest are defined in section 1. In section 2 we introduce the case study that motivates the method we propose. In section 3 we apply BCV principles by concatenating side effect events of Nicardipine by patient. Sensitivity analysis (SA) of ARs is introduced and demonstrated in section 4. The sensitivity analysis method presented here is discussed in section 5 where we formulate general data analysis considerations on how to organise and analyse semantic data.</p>\\n </div>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Analysis of Association Rules: Sensitivity Analysis
Association rules are extracting information from transactional databases of documents with a collection of items also called “tokens” or “words”. The approach is used in the analysis of text records, of social media and of consumer behaviour. We present an innovative sensitivity analysis of association rules (AR) measures of interest. In text analytics, a document term matrix (DTM) consists of rows referring to documents and columns corresponding to items. In binary weights, “1” indicates the presence of a term in a document and “0” otherwise. From a DTM one computes measures of interest characterising ARs. The approach we introduce is based on the application of befitting cross validation (BCV) principles to ARs. The sensitivity analysis of ARs is based on computer generated repeated shuffling of training and validation sets that provide an assessment of the uncertainty of AR measures of interest. We demonstrate this methodology with reports of symptoms associated with a Nicardipine drug product used in the treatment of high blood pressure and angina. Patients self-reports on side effect events are analysed. Association rules, derived from these reports, describe combinations of terms in these reports. AR measures of interest are defined in section 1. In section 2 we introduce the case study that motivates the method we propose. In section 3 we apply BCV principles by concatenating side effect events of Nicardipine by patient. Sensitivity analysis (SA) of ARs is introduced and demonstrated in section 4. The sensitivity analysis method presented here is discussed in section 5 where we formulate general data analysis considerations on how to organise and analyse semantic data.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.