工业过程中多元时间预测的自适应学习方法

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Fernando Miguelez, Josu Doncel, M. D. Ugarte
{"title":"工业过程中多元时间预测的自适应学习方法","authors":"Fernando Miguelez,&nbsp;Josu Doncel,&nbsp;M. D. Ugarte","doi":"10.1002/asmb.70016","DOIUrl":null,"url":null,"abstract":"<p>Industrial processes generate a massive amount of monitoring data that can be exploited to uncover hidden time losses in the system. This can be used to enhance the accuracy of maintenance policies and increase the effectiveness of the equipment. In this work, we propose a method for one-step probabilistic multivariate forecasting of time variables involved in a production process. The method is based on an Input-Output Hidden Markov Model (IO-HMM), in which the parameters of interest are the state transition probabilities and the parameters of the observations' joint density. The ultimate goal of the method is to predict operational process times in the near future, which enables the identification of hidden losses and the location of improvement areas in the process. The input stream in the IO-HMM model includes past values of the response variables and other process features, such as calendar variables, that can have an impact on the model's parameters. The discrete part of the IO-HMM models the operational mode of the process. The state transition probabilities are supposed to change over time and are updated using Bayesian principles. The continuous part of the IO-HMM models the joint density of the response variables. The estimate of the continuous model parameters is recursively computed through an adaptive algorithm that also admits a Bayesian interpretation. The adaptive algorithm allows for efficient updating of the current parameter estimates as soon as new information is available. We evaluate the method's performance using a real data set obtained from a company in a particular sector, and the results are compared with a collection of benchmark models.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.70016","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Learning Approach to Multivariate Time Forecasting in Industrial Processes\",\"authors\":\"Fernando Miguelez,&nbsp;Josu Doncel,&nbsp;M. D. Ugarte\",\"doi\":\"10.1002/asmb.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrial processes generate a massive amount of monitoring data that can be exploited to uncover hidden time losses in the system. This can be used to enhance the accuracy of maintenance policies and increase the effectiveness of the equipment. In this work, we propose a method for one-step probabilistic multivariate forecasting of time variables involved in a production process. The method is based on an Input-Output Hidden Markov Model (IO-HMM), in which the parameters of interest are the state transition probabilities and the parameters of the observations' joint density. The ultimate goal of the method is to predict operational process times in the near future, which enables the identification of hidden losses and the location of improvement areas in the process. The input stream in the IO-HMM model includes past values of the response variables and other process features, such as calendar variables, that can have an impact on the model's parameters. The discrete part of the IO-HMM models the operational mode of the process. The state transition probabilities are supposed to change over time and are updated using Bayesian principles. The continuous part of the IO-HMM models the joint density of the response variables. The estimate of the continuous model parameters is recursively computed through an adaptive algorithm that also admits a Bayesian interpretation. The adaptive algorithm allows for efficient updating of the current parameter estimates as soon as new information is available. We evaluate the method's performance using a real data set obtained from a company in a particular sector, and the results are compared with a collection of benchmark models.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

工业流程会产生大量的监控数据,可以利用这些数据来发现系统中隐藏的时间损失。这可以用来提高维护政策的准确性,提高设备的有效性。在这项工作中,我们提出了一种生产过程中涉及的时间变量的一步概率多元预测方法。该方法基于输入-输出隐马尔可夫模型(IO-HMM),其中感兴趣的参数是状态转移概率和观测值的联合密度参数。该方法的最终目标是在不久的将来预测操作过程时间,从而能够识别隐藏的损失并确定过程中改进区域的位置。IO-HMM模型中的输入流包括响应变量和其他过程特征(如日历变量)的过去值,它们会对模型的参数产生影响。IO-HMM的离散部分对过程的运行模式进行建模。状态转移概率应该随时间变化,并使用贝叶斯原理进行更新。IO-HMM的连续部分模拟了响应变量的联合密度。连续模型参数的估计是通过一种自适应算法递归计算的,该算法也承认贝叶斯解释。自适应算法允许在新信息可用时有效地更新当前参数估计。我们使用从特定行业的公司获得的真实数据集来评估该方法的性能,并将结果与一组基准模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Learning Approach to Multivariate Time Forecasting in Industrial Processes

Industrial processes generate a massive amount of monitoring data that can be exploited to uncover hidden time losses in the system. This can be used to enhance the accuracy of maintenance policies and increase the effectiveness of the equipment. In this work, we propose a method for one-step probabilistic multivariate forecasting of time variables involved in a production process. The method is based on an Input-Output Hidden Markov Model (IO-HMM), in which the parameters of interest are the state transition probabilities and the parameters of the observations' joint density. The ultimate goal of the method is to predict operational process times in the near future, which enables the identification of hidden losses and the location of improvement areas in the process. The input stream in the IO-HMM model includes past values of the response variables and other process features, such as calendar variables, that can have an impact on the model's parameters. The discrete part of the IO-HMM models the operational mode of the process. The state transition probabilities are supposed to change over time and are updated using Bayesian principles. The continuous part of the IO-HMM models the joint density of the response variables. The estimate of the continuous model parameters is recursively computed through an adaptive algorithm that also admits a Bayesian interpretation. The adaptive algorithm allows for efficient updating of the current parameter estimates as soon as new information is available. We evaluate the method's performance using a real data set obtained from a company in a particular sector, and the results are compared with a collection of benchmark models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信