{"title":"一种细粒度视觉分类中消除背景影响的注意定位算法","authors":"Yueting Huang;Zhenzhe Hechen;Mingliang Zhou;Zhengguo Li;Sam Kwong","doi":"10.1109/TCSVT.2025.3535818","DOIUrl":null,"url":null,"abstract":"Fine-grained visual classification (FGVC) is a challenging task characterized by interclass similarity and intraclass diversity and has broad application prospects. Recently, several methods have adopted the vision Transformer (ViT) in FGVC tasks since the data specificity of the multihead self-attention (MSA) mechanism in ViT is beneficial for extracting discriminative feature representations. However, these works focus on integrating feature dependencies at a high level, which leads to the model being easily disturbed by low-level background information. To address this issue, we propose a fine-grained attention-locating vision Transformer (FAL-ViT) and an attention selection module (ASM). First, FAL-ViT contains a two-stage framework to identify crucial regions effectively within images and enhance features by strategically reusing parameters. Second, the ASM accurately locates important target regions via the natural scores of the MSA, extracting finer low-level features to offer more comprehensive information through position mapping. Extensive experiments on public datasets demonstrate that FAL-ViT outperforms the other methods in terms of performance, confirming the effectiveness of our proposed methods. The source code is available at <uri>https://github.com/Yueting-Huang/FAL-ViT</uri>.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 6","pages":"5993-6006"},"PeriodicalIF":11.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention-Locating Algorithm for Eliminating Background Effects in Fine-Grained Visual Classification\",\"authors\":\"Yueting Huang;Zhenzhe Hechen;Mingliang Zhou;Zhengguo Li;Sam Kwong\",\"doi\":\"10.1109/TCSVT.2025.3535818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained visual classification (FGVC) is a challenging task characterized by interclass similarity and intraclass diversity and has broad application prospects. Recently, several methods have adopted the vision Transformer (ViT) in FGVC tasks since the data specificity of the multihead self-attention (MSA) mechanism in ViT is beneficial for extracting discriminative feature representations. However, these works focus on integrating feature dependencies at a high level, which leads to the model being easily disturbed by low-level background information. To address this issue, we propose a fine-grained attention-locating vision Transformer (FAL-ViT) and an attention selection module (ASM). First, FAL-ViT contains a two-stage framework to identify crucial regions effectively within images and enhance features by strategically reusing parameters. Second, the ASM accurately locates important target regions via the natural scores of the MSA, extracting finer low-level features to offer more comprehensive information through position mapping. Extensive experiments on public datasets demonstrate that FAL-ViT outperforms the other methods in terms of performance, confirming the effectiveness of our proposed methods. The source code is available at <uri>https://github.com/Yueting-Huang/FAL-ViT</uri>.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 6\",\"pages\":\"5993-6006\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10855837/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855837/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Attention-Locating Algorithm for Eliminating Background Effects in Fine-Grained Visual Classification
Fine-grained visual classification (FGVC) is a challenging task characterized by interclass similarity and intraclass diversity and has broad application prospects. Recently, several methods have adopted the vision Transformer (ViT) in FGVC tasks since the data specificity of the multihead self-attention (MSA) mechanism in ViT is beneficial for extracting discriminative feature representations. However, these works focus on integrating feature dependencies at a high level, which leads to the model being easily disturbed by low-level background information. To address this issue, we propose a fine-grained attention-locating vision Transformer (FAL-ViT) and an attention selection module (ASM). First, FAL-ViT contains a two-stage framework to identify crucial regions effectively within images and enhance features by strategically reusing parameters. Second, the ASM accurately locates important target regions via the natural scores of the MSA, extracting finer low-level features to offer more comprehensive information through position mapping. Extensive experiments on public datasets demonstrate that FAL-ViT outperforms the other methods in terms of performance, confirming the effectiveness of our proposed methods. The source code is available at https://github.com/Yueting-Huang/FAL-ViT.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.