基于张量分解的外观估计和图像分割

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jeova Farias Sales Rocha Neto
{"title":"基于张量分解的外观估计和图像分割","authors":"Jeova Farias Sales Rocha Neto","doi":"10.1109/OJSP.2025.3572820","DOIUrl":null,"url":null,"abstract":"Image Segmentation is one of the core tasks in Computer Vision, and solving it often depends on modeling the image appearance data via the color distributions of each of its constituent regions. Whereas many segmentation algorithms handle the appearance model dependence using alternation or implicit methods, we propose here a new approach to directly estimate them from the image without prior information on the underlying segmentation. Our method uses local high-order color statistics from the image as an input to a tensor factorization-based estimator for latent variable models. This approach is able to estimate models in multi-region images and automatically output the regions' proportions without prior user interaction, overcoming the drawbacks of a prior attempt to this problem. We also demonstrate the performance of our proposed method in many challenging synthetic and real imaging scenarios and show that it leads to an efficient segmentation algorithm.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"581-589"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011680","citationCount":"0","resultStr":"{\"title\":\"Appearance Estimation and Image Segmentation via Tensor Factorization\",\"authors\":\"Jeova Farias Sales Rocha Neto\",\"doi\":\"10.1109/OJSP.2025.3572820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Segmentation is one of the core tasks in Computer Vision, and solving it often depends on modeling the image appearance data via the color distributions of each of its constituent regions. Whereas many segmentation algorithms handle the appearance model dependence using alternation or implicit methods, we propose here a new approach to directly estimate them from the image without prior information on the underlying segmentation. Our method uses local high-order color statistics from the image as an input to a tensor factorization-based estimator for latent variable models. This approach is able to estimate models in multi-region images and automatically output the regions' proportions without prior user interaction, overcoming the drawbacks of a prior attempt to this problem. We also demonstrate the performance of our proposed method in many challenging synthetic and real imaging scenarios and show that it leads to an efficient segmentation algorithm.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"581-589\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011680\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11011680/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11011680/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

图像分割是计算机视觉的核心任务之一,解决图像分割问题往往依赖于通过图像各组成区域的颜色分布对图像外观数据进行建模。虽然许多分割算法使用交替或隐式方法处理外观模型依赖,但我们在这里提出了一种新的方法,可以直接从图像中估计它们,而不需要关于底层分割的先验信息。我们的方法使用来自图像的局部高阶颜色统计作为输入到基于张量分解的潜在变量模型估计器。该方法能够估计多区域图像中的模型,并在没有事先用户交互的情况下自动输出区域的比例,克服了先前尝试解决该问题的缺点。我们还在许多具有挑战性的合成和真实成像场景中展示了我们提出的方法的性能,并表明它导致了一种有效的分割算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Appearance Estimation and Image Segmentation via Tensor Factorization
Image Segmentation is one of the core tasks in Computer Vision, and solving it often depends on modeling the image appearance data via the color distributions of each of its constituent regions. Whereas many segmentation algorithms handle the appearance model dependence using alternation or implicit methods, we propose here a new approach to directly estimate them from the image without prior information on the underlying segmentation. Our method uses local high-order color statistics from the image as an input to a tensor factorization-based estimator for latent variable models. This approach is able to estimate models in multi-region images and automatically output the regions' proportions without prior user interaction, overcoming the drawbacks of a prior attempt to this problem. We also demonstrate the performance of our proposed method in many challenging synthetic and real imaging scenarios and show that it leads to an efficient segmentation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信