{"title":"用于视频压缩伪影去除的时空和频率融合","authors":"Mingxing Wang;Yipeng Liao;Weiling Chen;Liqun Lin;Tiesong Zhao","doi":"10.1109/TBC.2025.3550018","DOIUrl":null,"url":null,"abstract":"Video compression artifact removal focuses on enhancing the visual quality of compressed videos by mitigating visual distortions. However, existing methods often struggle to effectively capture spatio-temporal features and recover high-frequency details, due to their suboptimal adaptation to the characteristics of compression artifacts. To overcome these limitations, we propose a novel Spatio-Temporal and Frequency Fusion (STFF) framework. STFF incorporates three key components: Feature Extraction and Alignment (FEA), which employs SRU for effective spatiotemporal feature extraction; Bidirectional High-Frequency Enhanced Propagation (BHFEP), which integrates HCAB to restore high-frequency details through bidirectional propagation; and Residual High-Frequency Refinement (RHFR), which further enhances high-frequency information. Extensive experiments demonstrate that STFF achieves superior performance compared to state-of-the-art methods in both objective metrics and subjective visual quality, effectively addressing the challenges posed by video compression artifacts. Trained model available: <uri>https://github.com/Stars-WMX/STFF</uri>.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 2","pages":"542-554"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STFF: Spatio-Temporal and Frequency Fusion for Video Compression Artifact Removal\",\"authors\":\"Mingxing Wang;Yipeng Liao;Weiling Chen;Liqun Lin;Tiesong Zhao\",\"doi\":\"10.1109/TBC.2025.3550018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video compression artifact removal focuses on enhancing the visual quality of compressed videos by mitigating visual distortions. However, existing methods often struggle to effectively capture spatio-temporal features and recover high-frequency details, due to their suboptimal adaptation to the characteristics of compression artifacts. To overcome these limitations, we propose a novel Spatio-Temporal and Frequency Fusion (STFF) framework. STFF incorporates three key components: Feature Extraction and Alignment (FEA), which employs SRU for effective spatiotemporal feature extraction; Bidirectional High-Frequency Enhanced Propagation (BHFEP), which integrates HCAB to restore high-frequency details through bidirectional propagation; and Residual High-Frequency Refinement (RHFR), which further enhances high-frequency information. Extensive experiments demonstrate that STFF achieves superior performance compared to state-of-the-art methods in both objective metrics and subjective visual quality, effectively addressing the challenges posed by video compression artifacts. Trained model available: <uri>https://github.com/Stars-WMX/STFF</uri>.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"71 2\",\"pages\":\"542-554\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979468/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979468/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
STFF: Spatio-Temporal and Frequency Fusion for Video Compression Artifact Removal
Video compression artifact removal focuses on enhancing the visual quality of compressed videos by mitigating visual distortions. However, existing methods often struggle to effectively capture spatio-temporal features and recover high-frequency details, due to their suboptimal adaptation to the characteristics of compression artifacts. To overcome these limitations, we propose a novel Spatio-Temporal and Frequency Fusion (STFF) framework. STFF incorporates three key components: Feature Extraction and Alignment (FEA), which employs SRU for effective spatiotemporal feature extraction; Bidirectional High-Frequency Enhanced Propagation (BHFEP), which integrates HCAB to restore high-frequency details through bidirectional propagation; and Residual High-Frequency Refinement (RHFR), which further enhances high-frequency information. Extensive experiments demonstrate that STFF achieves superior performance compared to state-of-the-art methods in both objective metrics and subjective visual quality, effectively addressing the challenges posed by video compression artifacts. Trained model available: https://github.com/Stars-WMX/STFF.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”