Yipeng Liu;Qi Yang;Yujie Zhang;Yiling Xu;Le Yang;Xiaozhong Xu;Shan Liu
{"title":"一次训练全精:基于域相关退化描述的无参考点云质量评估","authors":"Yipeng Liu;Qi Yang;Yujie Zhang;Yiling Xu;Le Yang;Xiaozhong Xu;Shan Liu","doi":"10.1109/TBC.2025.3541862","DOIUrl":null,"url":null,"abstract":"The visual quality of point clouds plays a crucial role in the development and broadcasting of immersive media. Therefore, investigating point cloud quality assessment (PCQA) is instrumental in facilitating immersive media applications, including virtual reality and augmented reality applications. Considering reference point clouds are not available in many cases, no-reference (NR) metrics have become a research hotspot. Existing NR methods suffer from difficult training. To address this shortcoming, we propose a novel NR-PCQA method, Point Cloud Quality Assessment via Domain-relevance Degradation Description (D3-PCQA). First, we demonstrate our model’s interpretability by deriving the function of each module using a kernelized ridge regression model. Specifically, quality assessment can be characterized as a leap from the scattered perceptual domain (reflecting subjective perception) to the ordered quality domain (reflecting mean opinion score). Second, to reduce the significant domain discrepancy, we establish an intermediate domain, the description domain, based on insights from the human visual system (HVS), by considering the domain relevance among samples located in the perception domain and learning a structured latent space. The anchor features derived from the learned latent space are generated as cross-domain auxiliary information to promote domain transformation. Furthermore, the newly established description domain decomposes the NR-PCQA problem into two relevant stages. These stages include a classification stage that gives the degradation descriptions to point clouds and a regression stage to determine the confidence degrees of descriptions, providing a semantic explanation for the predicted quality scores. Experimental results demonstrate that D3-PCQA exhibits robust performance and outstanding generalization on several publicly available datasets.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 2","pages":"616-630"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Once-Training-All-Fine: No-Reference Point Cloud Quality Assessment via Domain-Relevance Degradation Description\",\"authors\":\"Yipeng Liu;Qi Yang;Yujie Zhang;Yiling Xu;Le Yang;Xiaozhong Xu;Shan Liu\",\"doi\":\"10.1109/TBC.2025.3541862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The visual quality of point clouds plays a crucial role in the development and broadcasting of immersive media. Therefore, investigating point cloud quality assessment (PCQA) is instrumental in facilitating immersive media applications, including virtual reality and augmented reality applications. Considering reference point clouds are not available in many cases, no-reference (NR) metrics have become a research hotspot. Existing NR methods suffer from difficult training. To address this shortcoming, we propose a novel NR-PCQA method, Point Cloud Quality Assessment via Domain-relevance Degradation Description (D3-PCQA). First, we demonstrate our model’s interpretability by deriving the function of each module using a kernelized ridge regression model. Specifically, quality assessment can be characterized as a leap from the scattered perceptual domain (reflecting subjective perception) to the ordered quality domain (reflecting mean opinion score). Second, to reduce the significant domain discrepancy, we establish an intermediate domain, the description domain, based on insights from the human visual system (HVS), by considering the domain relevance among samples located in the perception domain and learning a structured latent space. The anchor features derived from the learned latent space are generated as cross-domain auxiliary information to promote domain transformation. Furthermore, the newly established description domain decomposes the NR-PCQA problem into two relevant stages. These stages include a classification stage that gives the degradation descriptions to point clouds and a regression stage to determine the confidence degrees of descriptions, providing a semantic explanation for the predicted quality scores. Experimental results demonstrate that D3-PCQA exhibits robust performance and outstanding generalization on several publicly available datasets.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"71 2\",\"pages\":\"616-630\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909251/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909251/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Once-Training-All-Fine: No-Reference Point Cloud Quality Assessment via Domain-Relevance Degradation Description
The visual quality of point clouds plays a crucial role in the development and broadcasting of immersive media. Therefore, investigating point cloud quality assessment (PCQA) is instrumental in facilitating immersive media applications, including virtual reality and augmented reality applications. Considering reference point clouds are not available in many cases, no-reference (NR) metrics have become a research hotspot. Existing NR methods suffer from difficult training. To address this shortcoming, we propose a novel NR-PCQA method, Point Cloud Quality Assessment via Domain-relevance Degradation Description (D3-PCQA). First, we demonstrate our model’s interpretability by deriving the function of each module using a kernelized ridge regression model. Specifically, quality assessment can be characterized as a leap from the scattered perceptual domain (reflecting subjective perception) to the ordered quality domain (reflecting mean opinion score). Second, to reduce the significant domain discrepancy, we establish an intermediate domain, the description domain, based on insights from the human visual system (HVS), by considering the domain relevance among samples located in the perception domain and learning a structured latent space. The anchor features derived from the learned latent space are generated as cross-domain auxiliary information to promote domain transformation. Furthermore, the newly established description domain decomposes the NR-PCQA problem into two relevant stages. These stages include a classification stage that gives the degradation descriptions to point clouds and a regression stage to determine the confidence degrees of descriptions, providing a semantic explanation for the predicted quality scores. Experimental results demonstrate that D3-PCQA exhibits robust performance and outstanding generalization on several publicly available datasets.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”