用可解释神经网络的权值求解离散反电导率问题

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Elena Beretta , Maolin Deng , Alberto Gandolfi , Bangti Jin
{"title":"用可解释神经网络的权值求解离散反电导率问题","authors":"Elena Beretta ,&nbsp;Maolin Deng ,&nbsp;Alberto Gandolfi ,&nbsp;Bangti Jin","doi":"10.1016/j.jcp.2025.114162","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we develop a novel neural network (NN) approach to solve the discrete inverse conductivity problem of recovering the conductivity profile on network edges from the discrete Dirichlet-to-Neumann map on a square lattice. The novelty of the approach lies in the fact that the sought-after conductivity is not provided directly as the output of the NN but is instead encoded in the weights of the post-trainig NN in the second layer. Hence the weights of the trained NN acquire a clear physical meaning, which contrasts with most existing neural network approaches, where the weights are typically not interpretable. This work represents a step toward designing NNs with interpretable post-training weights. Numerically, we observe that the method outperforms the conventional Curtis-Morrow algorithm and constrained approach for both noisy full and partial data.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"538 ","pages":"Article 114162"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The discrete inverse conductivity problem solved by the weights of an interpretable neural network\",\"authors\":\"Elena Beretta ,&nbsp;Maolin Deng ,&nbsp;Alberto Gandolfi ,&nbsp;Bangti Jin\",\"doi\":\"10.1016/j.jcp.2025.114162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we develop a novel neural network (NN) approach to solve the discrete inverse conductivity problem of recovering the conductivity profile on network edges from the discrete Dirichlet-to-Neumann map on a square lattice. The novelty of the approach lies in the fact that the sought-after conductivity is not provided directly as the output of the NN but is instead encoded in the weights of the post-trainig NN in the second layer. Hence the weights of the trained NN acquire a clear physical meaning, which contrasts with most existing neural network approaches, where the weights are typically not interpretable. This work represents a step toward designing NNs with interpretable post-training weights. Numerically, we observe that the method outperforms the conventional Curtis-Morrow algorithm and constrained approach for both noisy full and partial data.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"538 \",\"pages\":\"Article 114162\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125004450\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125004450","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们开发了一种新的神经网络(NN)方法来解决从方形晶格上的离散Dirichlet-to-Neumann映射恢复网络边缘上的电导率剖面的离散反电导率问题。该方法的新颖之处在于,受欢迎的电导率没有直接作为神经网络的输出提供,而是在第二层的训练后神经网络的权重中进行编码。因此,训练后的神经网络的权重获得了明确的物理意义,这与大多数现有的神经网络方法形成了对比,其中权重通常是不可解释的。这项工作代表了设计具有可解释训练后权重的神经网络的一步。在数值上,我们观察到该方法在全数据和部分噪声数据下都优于传统的Curtis-Morrow算法和约束方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The discrete inverse conductivity problem solved by the weights of an interpretable neural network
In this work, we develop a novel neural network (NN) approach to solve the discrete inverse conductivity problem of recovering the conductivity profile on network edges from the discrete Dirichlet-to-Neumann map on a square lattice. The novelty of the approach lies in the fact that the sought-after conductivity is not provided directly as the output of the NN but is instead encoded in the weights of the post-trainig NN in the second layer. Hence the weights of the trained NN acquire a clear physical meaning, which contrasts with most existing neural network approaches, where the weights are typically not interpretable. This work represents a step toward designing NNs with interpretable post-training weights. Numerically, we observe that the method outperforms the conventional Curtis-Morrow algorithm and constrained approach for both noisy full and partial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信