基于递归神经网络的数据驱动动态摩擦模型

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gaëtan Cortes, Joaquin Garcia-Suarez
{"title":"基于递归神经网络的数据驱动动态摩擦模型","authors":"Gaëtan Cortes,&nbsp;Joaquin Garcia-Suarez","doi":"10.1016/j.acags.2025.100249","DOIUrl":null,"url":null,"abstract":"<div><div>In this concise contribution, it is demonstrated that Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) architecture, possess the capability to learn the complex dynamics of rate-and-state friction (RSF) laws from synthetic data. The data employed for training the network is generated through the application of traditional RSF equations coupled with either the aging law or the slip law for state evolution. A novel aspect of this approach is the formulation of a loss function that explicitly accounts for the direct effect by means of automatic differentiation. It is found that the GRU-based RNNs effectively learns to predict changes in the friction coefficient resulting from velocity jumps (with and without noise in the target data), thereby showcasing the potential of machine learning models in capturing and simulating the physics of frictional processes. Current limitations and challenges are discussed.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"26 ","pages":"Article 100249"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven dynamic friction models based on Recurrent Neural Networks\",\"authors\":\"Gaëtan Cortes,&nbsp;Joaquin Garcia-Suarez\",\"doi\":\"10.1016/j.acags.2025.100249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this concise contribution, it is demonstrated that Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) architecture, possess the capability to learn the complex dynamics of rate-and-state friction (RSF) laws from synthetic data. The data employed for training the network is generated through the application of traditional RSF equations coupled with either the aging law or the slip law for state evolution. A novel aspect of this approach is the formulation of a loss function that explicitly accounts for the direct effect by means of automatic differentiation. It is found that the GRU-based RNNs effectively learns to predict changes in the friction coefficient resulting from velocity jumps (with and without noise in the target data), thereby showcasing the potential of machine learning models in capturing and simulating the physics of frictional processes. Current limitations and challenges are discussed.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"26 \",\"pages\":\"Article 100249\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259019742500031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019742500031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这个简洁的贡献中,证明了基于门控循环单元(GRU)架构的递归神经网络(RNNs)具有从合成数据中学习复杂动态速率和状态摩擦(RSF)定律的能力。用于训练网络的数据是通过将传统的RSF方程与状态演化的老化律或滑移律相结合来生成的。这种方法的一个新颖方面是通过自动微分明确地说明直接影响的损失函数的公式。研究发现,基于gru的rnn有效地学习预测速度跳跃(目标数据中有或没有噪声)导致的摩擦系数变化,从而展示了机器学习模型在捕获和模拟摩擦过程物理方面的潜力。讨论了当前的限制和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven dynamic friction models based on Recurrent Neural Networks
In this concise contribution, it is demonstrated that Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) architecture, possess the capability to learn the complex dynamics of rate-and-state friction (RSF) laws from synthetic data. The data employed for training the network is generated through the application of traditional RSF equations coupled with either the aging law or the slip law for state evolution. A novel aspect of this approach is the formulation of a loss function that explicitly accounts for the direct effect by means of automatic differentiation. It is found that the GRU-based RNNs effectively learns to predict changes in the friction coefficient resulting from velocity jumps (with and without noise in the target data), thereby showcasing the potential of machine learning models in capturing and simulating the physics of frictional processes. Current limitations and challenges are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信